
Mapping genes for human face shape: 1 

exploration of univariate phenotyping 2 

strategies 3 

 4 

Meng Yuan1,2,3*✉, Seppe Goovaerts2,3*✉, Michiel Vanneste2,3, Harold Matthews2,3,4, Hanne 5 
Hoskens1,2,3,5, Stephen Richmond6, Ophir D Klein7,8, Richard A Spritz9, Benedikt Hallgrimsson5, 6 
Susan Walsh10, Mark D Shriver11, John R Shaffer12,13, Seth M Weinberg12,13,14, Hilde Peeters2, Peter 7 

Claes1,2,3,4✉ 8 

 9 

 10 
1Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium. 11 
2Department of Human Genetics, KU Leuven, Leuven, Belgium. 12 
3Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.  13 
4Murdoch Children's Research Institute, Melbourne, Victoria, Australia.  14 
5Department of Cell Biology & Anatomy, Cumming School of Medicine, Alberta Children’s Hospital Research 15 
Institute, University of Calgary, Calgary, Alberta, Canada 16 
6Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom 17 
7Departments of Orofacial Sciences and Pediatrics, and Institute for Human Genetics, University of California, San 18 
Francisco, San Francisco, CA, USA. 19 
8Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, USA. 20 
9Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, CO, USA. 21 
10Department of Biology, Indiana University Indianapolis, Indianapolis, IN, USA. 22 
11Department of Anthropology, Pennsylvania State University, State College, PA, USA. 23 
12Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, 24 
Pittsburgh, PA, USA 25 
13Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA. 26 
14Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA. 27 
 28 
*These authors contributed equally. 29 
 30 
✉Corresponding authors 31 
Meng Yuan (meng.yuan@kuleuven.be) 32 
Seppe Goovaerts (seppe.goovaerts@kuleuven.be) 33 
Peter Claes (peter.claes@kuleuven.be)  34 

  35 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.06.06.597731doi: bioRxiv preprint 

mailto:meng.yuan@kuleuven.be
mailto:seppe.goovaerts@kuleuven.be
mailto:peter.claes@kuleuven.be
https://doi.org/10.1101/2024.06.06.597731


 2 

Abstract 36 

Human facial shape, while strongly heritable, involves both genetic and structural complexity, 37 

necessitating precise phenotyping for accurate assessment. Common phenotyping strategies 38 

include simplifying 3D facial features into univariate traits such as anthropometric measurements 39 

(e.g., inter-landmark distances), unsupervised dimensionality reductions (e.g., principal 40 

component analysis (PCA) and auto-encoder (AE) approaches), and assessing resemblance to 41 

particular facial gestalts (e.g., syndromic facial archetypes). This study provides a comparative 42 

assessment of these strategies in genome-wide association studies (GWASs) of 3D facial shape. 43 

Specifically, we investigated inter-landmark distances, PCA and AE-derived latent dimensions, 44 

and facial resemblance to random, extreme, and syndromic gestalts within a GWAS of 8,426 45 

individuals of recent European ancestry. Inter-landmark distances exhibit the highest SNP-based 46 

heritability as estimated via LD score regression, followed by AE dimensions. Conversely, 47 

resemblance scores to extreme and syndromic facial gestalts display the lowest heritability, in 48 

line with expectations. Notably, the aggregation of multiple GWASs on facial resemblance to 49 

random gestalts reveals the highest number of independent genetic loci. This novel, easy-to-50 

implement phenotyping approach holds significant promise for capturing genetically relevant 51 

morphological traits derived from complex biomedical imaging datasets, and its applications 52 

extend beyond faces. Nevertheless, these different phenotyping strategies capture different 53 

genetic influences on craniofacial shape. Thus, it remains valuable to explore these strategies 54 

individually and in combination to gain a more comprehensive understanding of the genetic 55 

factors underlying craniofacial shape and related traits. 56 
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Author Summary  58 

Advancements linking variation in the human genome to phenotypes have rapidly evolved in 59 

recent decades and have revealed that most human traits are influenced by genetic variants to 60 

at least some degree. While many traits, such as stature, are straightforward to acquire and 61 

investigate, the multivariate and multipartite nature of facial shape makes quantification more 62 

challenging. In this study, we compared the impact of different facial phenotyping approaches 63 

on gene mapping outcomes. Our findings suggest that the choice of facial phenotyping method 64 

has an impact on apparent trait heritability and the ability to detect genetic association signals. 65 

These results offer valuable insights into the importance of phenotyping in genetic investigations, 66 

especially when dealing with highly complex morphological traits. 67 

Introduction  68 

Human facial development is highly complex, resulting in a rich diversity of facial appearances 69 

both within and among populations. Furthermore, facial features have a strong genetic basis, 70 

readily apparent within families. The genome-wide association scan (GWAS) is an agnostic 71 

approach designed to investigate the statistical relationship between phenotypic traits and 72 

genetic variants. A typical GWAS involves individually testing millions of single nucleotide 73 

polymorphisms (SNPs) or other common variants dispersed across the genome. Because the 74 

precise location of SNPs and genes is known, GWAS signals showing strong evidence of 75 

association can point to genes of interest. While many human traits are relatively straightforward 76 
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to acquire, capturing facial variation is considerably less so, due to the multivariate and 77 

multipartite nature of faces. 78 

Since the initial two GWASs on components of typical-range facial shape variation in 2012 [1,2], 79 

more than 300 genome-wide significant signals have been identified in over 20 different studies 80 

[3]. Several recent studies [4–8] have embraced a multivariate GWAS framework, regressing 81 

multiple univariate traits simultaneously onto each SNP genotype, and have thereby 82 

outperformed univariate GWAS in terms of genetic discovery. Nevertheless, several compelling 83 

arguments favor univariate GWAS. First, univariate GWAS results can be easily combined across 84 

studies via meta-analysis, thereby enhancing statistical power while obviating the need to share 85 

highly sensitive facial and genomic data. Second, several important follow-up analyses and GWAS 86 

applications, such as linkage disequilibrium score regression (LDSC) [9] and polygenic risk score 87 

calculations, require signed effect size and error estimates, which are not readily provided by 88 

multivariate techniques. Finally, univariate GWAS is simpler to execute and demands fewer 89 

computational resources than multivariate GWAS.  90 

In a traditional anthropometric approach to facial phenotyping, researchers collect a set of 91 

univariate measurements such as the distances between pairs of well recognizable, sparsely 92 

distributed facial landmarks [1,2,10–18]. Newer approaches have used geometric morphometrics 93 

[14,16,19] and expanded sparse landmarks into spatially dense quasi-landmark representations 94 

of the face [4,5,7,8,20]. Then, starting from complete landmark configurations (sparse or dense), 95 

a popular feature extraction or phenotyping method is principal component analysis (PCA) to 96 

extract a set of orthogonal features that represent facial variation. More recently, alternative 97 

deep-learning networks, such as auto-encoders (AE), have emerged as non-linear counterparts 98 
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to PCA. Despite the current trend favoring neural networks, to the best of our knowledge, these 99 

have not yet been applied in facial GWAS. 100 

Apart from methods involving facial anthropometrics or unsupervised learning, supervised 101 

approaches have also been used to extract specific univariate facial features. For instance, it is 102 

feasible to extract facial characteristics expected to exhibit high heritability, such as facial traits 103 

shared among siblings [21]. Another illustration is GWASs conducted using resemblance scores 104 

guided by patient facial archetype associated with Achondroplasia [22] or Pierre Robin Sequence 105 

[23]. Similarly, resemblance scores to the distinctive facial endophenotype in unaffected relatives 106 

of individuals with non-syndromic cleft lip was successfully used in GWAS, which helped to 107 

further elucidate the genetic susceptibility to non-syndromic cleft lip [24].  108 

Here, we provide a comprehensive comparison of univariate facial phenotyping approaches in 109 

GWAS of facial shape based on a cohort of 8,246 healthy European individuals. We evaluated 110 

phenotyping approaches based on two criteria: (1) GWAS discovery rate, defined as the number 111 

of independent association signals identified in aggregate across phenotypes in the same 112 

category (e.g., all principal components), and (2) SNP-based heritability determined by LDSC [9]. 113 

Additionally, this work offers secondary contributions by (1) exploring the latent dimensions of 114 

an AE as facial traits in GWAS, and by (2) introducing two additional supervised phenotyping 115 

schemes, one by extreme facial gestalts and another by randomly selected facial gestalts. 116 
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Results 117 

As illustrated in Fig 1, this study explored three distinct facial phenotyping strategies or 118 

categories. The first category, known as anthropometric techniques, focused on inter-landmark 119 

measurements. These measurements were defined as the Euclidean distances in 3D space 120 

between pairs of sparse facial landmarks. The second category, referred to as unsupervised 121 

techniques, involved deriving latent representations obtained through PCA and AE. These 122 

techniques generated up to 200 latent dimensions from spatially dense configurations of quasi-123 

landmarks (n=7,610), as established using MeshMonk [25]. The third category, termed 124 

supervised techniques, centered around resemblance-based facial traits, comparing each 125 

individual in the cohort to specific facial gestalts ranging from random to extreme to syndrome-126 

related facial examples. Each face in the cohort received a resemblance score by measuring its 127 

cosine distance in multivariate face space against the provided facial examples (random, 128 

extreme, and syndromic). All phenotyping methods were applied to the complete facial shape 129 

and, separately, to nasal shape. The focus on nasal shape was due to its high heritability, making 130 

it a particularly noteworthy facial region for detailed examination [26]. 131 

SNP-based heritability 132 

Fig 2 illustrates the distribution of SNP-based heritability, computed using LDSC [9], for facial 133 

traits extracted by various phenotyping methods. For full facial shape, inter-landmark distances 134 

demonstrated the highest mean heritability, followed closely, without significant difference (Fig 135 

S1 in supplementary file 1), by traits extracted through an AE. PCs and resemblance scores to 136 

randomly selected facial gestalts were both ranked as the second most heritable traits, although 137 
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PCs displayed greater variation in heritability scores. Notably, the mean heritability for 138 

resemblance scores to both extreme and syndromic facial examples was the lowest, implying a 139 

reduced influence of common genetic variants. Similar trends were observed for nasal shape, 140 

except that inter-landmark distances, in this scenario, displayed significantly higher heritability 141 

than all other categories of nasal phenotypes (Fig S1-2 in supplementary file 1).  142 

Identification of trait-associated genetic loci 143 

We assessed the GWAS discovery rate for various categories of facial traits by counting the 144 

number of independent genetic loci associated with a set of traits of the same type. We gradually 145 

increased the numbers of traits submitted for GWAS in each phenotype category, for example, 146 

the first N PCs, with N varying between 1 and the total number of PCs. Combining multiple 147 

univariate GWASs was achieved by taking the lowest P-value for each SNP across all the 148 

univariate traits considered. To appropriately control for the multiple testing burden, we 149 

estimated a group-wide significance threshold as P < 5e-8 divided by the effective number of 150 

traits (Methods). 151 

The effective number of traits within a single group is shown in Fig 3.A. As expected, PCs are 152 

uncorrelated, so the number of effective traits equals the number of PCs used in a group. In 153 

contrast, inter-landmark distances exhibited a high degree of correlation, shown as a flattened 154 

curve. A lower degree of correlation was observed for resemblance-based traits 155 

(random/extreme/syndromic) and AE latent dimensions. 156 

For each category of traits, the discovery rate generally increased when including more effective 157 

traits in GWAS (Fig 3.B). This is most strongly observed for inter-landmark distances. For nasal 158 
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shape, the limited number of 10 inter-landmark distances resulted in the poorest discovery rate 159 

overall. In contrast, 276 inter-landmark distances were extracted from full facial shape, leading 160 

to the best discovery rate across all tested measures.  161 

For nasal shape, the findings for the unsupervised techniques of PCA and AE exhibited similar 162 

trends. Specifically, as more effective traits were included, the number of identified genetic loci 163 

initially increased until it reached a maximum, after which a decline in the discovery rate was 164 

observed. This decline can be attributed to the tradeoff between adding less genetically 165 

interesting traits and a more significant threshold that is required to adjust for multiple testing. 166 

Particularly in the case of PCA, it is well-established that later PCs primarily model noise in the 167 

data and are not expected to contribute to further genetic discoveries. The same was observed 168 

for the latent dimensions of AE, despite their lack of a specific order in terms of phenotypic 169 

variance explained, unlike PCs. For full facial shape, a similar pattern of initial increase and 170 

subsequent decline was observed for AE and PCs, but the AE latent dimensions failed to reach 171 

the same discovery rate as PCs. 172 

For the supervised techniques, the relatively small number of syndromes (n=25) may have 173 

impacted the overall GWAS discovery rate for this group when compared to all the other 174 

phenotyping strategies. Nonetheless, in the case of nasal shape, the maximum discovery rate for 175 

syndrome archetypes is high compared to the number of effective traits used. Conversely, this 176 

was not the case for full facial shape. This finding highlights that syndrome archetypes are 177 

valuable, particularly in nasal regions, but may not be as effective in characterizing full facial 178 

variation. The outcomes obtained by extreme facial gestalts initially showed a lower 179 

identification rate of associated common variants, but gradually converged with other 180 
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techniques as the number of effective traits increased. It is important to note that this 181 

convergence is essentially a result of treating more faces as “extreme”, even though they may 182 

actually be less or no longer extreme (as explained in the Methods).  Lastly, in the case of 183 

resemblance to random facial gestalts, a steady increase in GWAS discovery rate is observed as 184 

the number of effective traits increases. Notably, when further expanding the number of random 185 

facial gestalts used (Fig S3), this approach outperforms all other methods. In other words, the 186 

benefits of adding more traits outweigh the multiple testing burden in this scenario. However, 187 

due to the randomness involved, the GWAS discovery rate showed greater variation when 188 

repeating the experiment over consecutive runs, as indicated by the error bars in Fig 3.B and Fig 189 

S3. 190 

Fig 3.C illustrates the GWAS discovery rate plotted against the cumulative phenotypic variance 191 

explained by each phenotyping method. The variance explained for a group of facial traits was 192 

measured using partial least-squares (PLS) regression (using the ‘plsregress’ function from 193 

MATLAB R2022b) with the original images (3D quasi-landmark configurations) as responses and 194 

the grouped univariate facial traits as predictors. The cumulative variance of all PLS components 195 

reflects the explained phenotypic variance. Interestingly, the first PC, while explaining 31.22% of 196 

the phenotypic facial variation, did not yield any significant genetic loci. Furthermore, the first 10 197 

PCs captured 80.75% of total facial variation but resulted in the identification of only 4 198 

independent genetic loci. The same was observed for AE dimensions. This suggests that, while a 199 

substantial amount of geometric phenotypic variance is captured by the first few PCs and AE 200 

dimensions, they do not necessarily correspond to genetically relevant information. In contrast 201 

to both dimensionality reduction techniques, the number of identified genetic loci based on 202 
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inter-landmark distances and resemblance-based scores increased rapidly with even a limited 203 

number of traits, explaining only a few percent of the complete facial variation. This indicates 204 

that, while these traits capture less geometric facial variation, they result in a greater number of 205 

discoveries in GWAS, suggesting that these traits are enriched for genetically determined aspects 206 

of shape variation. 207 

Sharing of genomic signals 208 

We tested whether various types of traits resulted in overlapping or distinct sets of identified 209 

independent genetic loci and annotated genes (Fig 4). For each group of traits, we evaluated 210 

genetic loci under the “best-case scenario”, i.e., when the maximal number of independent 211 

genetic loci was reached. Genetic loci were considered shared between two different methods if 212 

their respective lead SNPs were located within 250kb of each other. Considering that AE latent 213 

dimensions and randomly selected facial gestalts are inherently stochastic phenotyping 214 

strategies, we conducted multiple runs for these approaches to assess the impact of randomness 215 

on the results. 216 

Surprisingly, the extent of overlap in terms of genetic loci between different methods was 217 

relatively limited. When taking the union of all independent genetic loci identified across 218 

different approaches, we found 60 loci associated with the nose and 58 loci associated with the 219 

face. This suggests that each of the phenotyping strategies capture distinct aspects of facial shape 220 

variation and, as a result, they strongly complement each other in pinpointing genetic factors 221 

that influence facial shape. Similarly, for 10 replicates of generating multiple AE latent 222 

dimensions and resemblance to random gestalts based on nasal shape, the combined set of 223 
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identified genetic loci across all 10 randomizations yielded 46 and 33 genetic loci, respectively. 224 

For full facial shape, the union set included 31 genetic loci using AE latent dimensions and 33 225 

genetic loci using resemblance to random gestalts, respectively. This underscores the importance 226 

of conducting multiple runs, as the inherent randomness in the process proves advantageous in 227 

thoroughly exploring the entire spectrum of facial shape variation. 228 

The number of pairwise overlapping genes followed a similar pattern to the number of pairwise 229 

overlapping genetic loci, as expected. Several key craniofacial transcription factors, including 230 

ALX1, PAX3, TBX15, and SOX9, were consistently identified, regardless of the category of traits 231 

used. The complete list of genes detected by at least four different categories of traits (out of the 232 

total of six groups) can be found in supplementary file 3 Table S2-3. When considering a single 233 

trait, the identification of genes was relatively constrained, resulting in a corresponding limitation 234 

in detecting Gene Ontology (GO) biological processes. However, based on the union set of lead 235 

SNPs from all groups of phenotypes, the top terms (based on lowest binomial P values) in the GO 236 

biological processes category were all highly relevant to craniofacial shape (full lists can be found 237 

in source data). This again indicates the idea that different phenotyping strategies are indeed 238 

complementary in capturing the diverse genetic influences on craniofacial shape. 239 

Discussion 240 

In this study, we evaluated and compared different techniques for extracting univariate facial 241 

phenotypes in humans, quantified from 3D facial images. Traditional anthropometric traits, such 242 

as inter-landmark distances, demonstrated the highest mean heritability suggesting that they are 243 

well focused towards genetically determined aspects of shape variation. While the set of inter-244 
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landmark distances yielded a relatively high number of GWAS loci compared to a similarly sized 245 

set of traits from a different phenotyping category, the total number of loci identified was 246 

ultimately limited by the number of available landmarks. This became especially apparent for 247 

nasal shape, where only 5 landmarks were available to extract pairwise distances, such that all 248 

other phenotyping categories identified a greater number of GWAS loci. Even though the 249 

absolute number of inter-landmark distances rapidly increases with each additional landmark, 250 

the number of effective phenotypes lags behind due to the high degree of correlation between 251 

these measurements. Therefore, the scalability of this phenotyping approach is limited at a 252 

computational cost.  This may partly be alleviated by selecting the most accurate and distinctive 253 

measures based on prior knowledge of anatomy and biology [27,28]. Altogether, measuring 254 

inter-landmark distances, already used extensively in facial GWAS [1,2,10–18], is a viable 255 

univariate phenotyping method with a good yield in GWAS on the condition that enough 256 

landmarks are available and computational cost is considered. However, in comparison to the 257 

other techniques, they are highly correlated and are likely to identify only a specific set of genetic 258 

influences to facial shape. Therefore, it is ideal for this approach to be supplemented with 259 

another strategy to cover the full spectrum of genetic factors underlying facial shape. 260 

A more complete description of facial shape can be obtained by modeling the set of dense 3D 261 

quasi-landmark coordinates, which constitutes a highly correlated set of facial features. 262 

Unsupervised dimension reduction techniques offer a means to compress this set into a reduced 263 

set of morphological variables that can be used as traits in GWAS analysis thereby using 264 

dramatically fewer computational resources compared to using the individual landmarks. 265 
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Among the unsupervised dimension reduction methods for facial shape analysis, PCA has seen 266 

the most use in the literature, including in GWAS analysis [3]. PCA is deterministic, conceptually 267 

simple, and available in most data analysis platforms. One advantage that PCA offers is the 268 

ordering of its PCs according to their contribution to phenotypic variance. It is well-established 269 

that noise from the original images is modeled by the later PCs, which makes it straightforward 270 

to determine how many PCs to retain post hoc. However, we observed that the amount of 271 

phenotypic variance explained by a single PC does not necessarily indicate its utility for 272 

discovering genetic associations. For example, a GWAS on the first PC of facial shape failed to 273 

identify a single locus, despite this PC explaining 31.22% of overall shape variation. In fact, when 274 

looking at the combined GWAS results across all the facial shape PCs (Fig 3.B and C), we observed 275 

that the majority of independently identified genomic loci were contributed by PCs 10–40. Earlier 276 

PCs explained more phenotypic variation but did not identify as many genetic associations. Later 277 

PCs (>40) did not contribute many additional loci but did exacerbate the multiple testing burden, 278 

resulting in an optimal number of loci identified at around 70 facial PCs followed by a drop-off. 279 

Furthermore, we found that PCs exhibit a lower mean heritability compared to inter-landmark 280 

distances with a wide range in heritability values across the PCs. This may suggest that, while 281 

some components have a strong genetic basis, others may not. This may be attributed to by the 282 

fact that PCs are essentially mathematical constructs constrained to be mutually orthogonal, 283 

whereas inter-landmark distances have the freedom to be correlated, capturing slightly different 284 

yet overlapping information. Altogether, PCs derived from dense landmark configurations almost 285 

fully capture the available 3D shape information and are straightforward to acquire. However, 286 
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we have shown that the order of features/PCs based on phenotypic variance explained does not 287 

necessarily indicate their relevance for genetic findings. 288 

Another dimension reduction technique considered in our study was an AE. These deep learning-289 

based networks have surfaced as a popular non-linear alternative to PCA in many fields of 290 

research including image analysis [29,30]. However, the latent dimensions of an AE are currently 291 

underexplored as a phenotyping strategy, and have never, as far as we are aware at the time of 292 

writing, been used in facial GWAS analysis. In contrast to PCA, setting up and training an AE 293 

network requires far more time and expertise due to its complexity and the extensive parameter 294 

tuning required. For example, the number of latent variables needs to be set prior to model 295 

training, and creating more compact or elaborate models requires re-training. Simply excluding 296 

latent dimensions leads to poor reconstruction performance [31], hence determining the optimal 297 

latent dimensionality becomes a process of trial and error. Furthermore, latent variables of an 298 

AE are unordered, explain similar amounts of overall phenotypic variation, can encode for non-299 

linear data interactions, and are not subject to any orthogonality constraints. These properties 300 

have likely contributed to their high SNP-based heritability, only second to inter-landmark 301 

distances and significantly higher than PCs. However, despite their high expected SNP-based 302 

heritability, AE latent dimensions identified a similar number of independent genomic loci in 303 

GWAS on nasal shape compared to PCs, and fewer in GWAS on facial shape. These results suggest 304 

that although individual AE dimensions may have a strong genetic basis, properties such as their 305 

cross-correlations and redundancy make them no better than PCs for genetic discovery. These 306 

observations challenge the increasing preference for machine learning-based algorithms in facial 307 

analysis, where PCA is criticized for relying on linear transformations and therefore likely 308 
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struggling with non-linearity in facial data. However, non-linearity might not be as abundant as 309 

one might expect in static facial shapes, or alternatively, the added value of this ability is only 310 

minimal in the context of GWAS. This is unlike situations where machine learning algorithms have 311 

outperformed PCA by learning the nonlinear variations associated with different facial 312 

expressions or pose conditions [32].  313 

While dimension reduction methods are powerful for extracting features from high-dimensional 314 

correlated datasets, the biological meaning of their resulting features and the validity of the 315 

results reported in the field of genetics have been questioned [33,34]. To ensure biological 316 

relevancy of the obtained morphological variables, some studies [19,35] have first derived 317 

phenotypes through a dimension reduction method and subsequently selected a subset of traits 318 

for downstream analysis based on heritability estimations. A more sophisticated approach 319 

adopted by some recent studies is to rely on prior biological knowledge to derive likely heritable 320 

facial traits in a supervised manner. Focusing on heritability directly, researchers have extracted 321 

highly heritable facial traits by considering familial resemblance and family-based heritability 322 

estimations from which they derived measures such as the principal component of heritability 323 

[36–38] and siblings-shared facial traits [21]. Furthermore, to investigate both typical-range and 324 

disease-associated variation in facial morphology, some studies employed a phenotyping method 325 

supervised by genetic conditions characterized by distinct facial features. Examples include 326 

resemblance scores to the facial archetype associated with Achondroplasia [22] and Pierre Robin 327 

Sequence [23] as well as resemblance scores to the distinctive facial endophenotype in 328 

unaffected family members of individuals with non-syndromic cleft lip [24]. The general idea of 329 

this approach is to directly measure the facial features that result from subtle variations within 330 
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the same physiological pathways, which when disrupted result in distinct (sub-)clinical facial 331 

characteristics. Substantially expanding on this approach, our comparative study included 332 

resemblance scores supervised by the facial archetypes derived from 25 syndromes associated 333 

with distinct facial characteristics. Lastly, we further generalized this approach to supervise the 334 

facial phenotyping by either extreme (but non-clinical) or randomly selected facial examples.  335 

Extreme phenotypes are often associated with strong genetic signals, such as large-effect single 336 

gene variants, as initially explored for facial shape by Crouch et al. [19]. Building on this insight, 337 

we recognize that multidimensional facial variations allow for the identification of extreme faces, 338 

which can be used to supervise resemblance scores. Similarly, a randomly selected actual face is 339 

expected to reflect genetic signals as it is a product of inheritance. Therefore, we used randomly 340 

selected actual faces to supervise resemblance scores as facial traits in GWAS. Resemblance 341 

scores supervised by syndromic facial archetypes exhibited lower mean heritability and resulted 342 

in fewer genetic loci compared to other groups of traits. This may be explained by the limited 343 

number of syndrome groups and the role of low frequency genetic variants. To illustrate, the 344 

limited number of syndrome groups resulted in a limited number of syndrome-derived traits, 345 

further leading to a lower statistical power. In addition, as GWASs focus on common genetic 346 

variants, they overlook low-frequency and rare genetic variants that could potentially underpin 347 

these traits. Similar findings were observed for resemblance scores to extreme facial gestalts. 348 

While eventually achieving a comparable GWAS discovery rate to PCA, this convergence primarily 349 

resulted from the inclusion of more extreme facial examples, which were progressively less 350 

extreme. Nevertheless, while resemblance scores derived from syndromic and extreme facial 351 

examples may not yield the greatest number of loci in GWAS, studies [22–24] have demonstrated 352 
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that a targeted facial phenotyping resulted in GWAS loci that displayed a stronger link with 353 

disease etiology versus non-targeted phenotyping approaches. Therefore, facial traits derived 354 

from genetic conditions may facilitate the discovery of disease-related genes and pathways in 355 

future investigations. This could be especially interesting in the context of uncommon and rare 356 

genetic variants available from whole-exome or whole-genome datasets. 357 

Resemblance scores to random facial gestalts surpassed all the other phenotyping approaches in 358 

terms of the number of identified genetic loci in GWAS, on the condition that enough of such 359 

traits were considered. Measuring the resemblance to a specific randomly selected facial gestalt 360 

can be thought of as measuring the extent to which a specific person’s set of facial features is 361 

present in the faces of the other individuals within the cohort. Therefore, the total number of 362 

extractable traits is equal to the cohort size, usually in the thousands. Mathematically, each 363 

randomly selected facial gestalt, under the absence of identical twins, represents a unique 364 

direction in the face space, thus allowing one to sample that space in a brute-force-like way. 365 

Compared to other phenotyping approaches, these traits displayed a high mean SNP-based 366 

heritability and yielded a high number of significant genetic loci relative to their explained 367 

phenotypic variance. Together, this suggests that a measure of resemblance to a random facial 368 

gestalt captures genetically determined aspects of facial shape variation. A possible explanation 369 

could be that this approach intentionally focusses on facial features that are observed within a 370 

cohort as a result of inheritance, rather than on purely mathematical decompositions of facial 371 

shape. In summary, the ability to generate many facial phenotypes with a high expected 372 

heritability and that yield a set of complementary loci in GWAS, make resemblance to randomly 373 

selected facial gestalts a great option for those willing to accept the computational burden. 374 
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The limited overlap observed in identified genetic loci across different methods suggests that 375 

each phenotyping strategy captures distinct genetic factors influencing facial shape. This 376 

observation may reflect the Beavis effect [39,40], where each method samples from a larger, 377 

underlying but truncated distribution of biologically real signals, and the detected loci are 378 

subsample specific. The more underpowered a study is to capture the full range of effects, the 379 

more pronounced the Beavis effect becomes, increasing the probability of non-replication of 380 

genuine signals. In other words, with unlimited and continuously growing sample sizes, it might 381 

become possible that the different phenotyping strategies converge onto each other, and that 382 

genetic loci identified by one strategy are replicated by another strategy. However, with the 383 

current sample sizes of today, that remains to be investigated.  384 

When using resemblance scores for random gestalts and AE latent scores, the sets of identified 385 

genetic loci varied substantially across multiple replicates of GWAS due to different random 386 

initializations. While this presents challenges for interpretation and replication, the larger union 387 

set of significant genetic loci offers opportunities for comprehensively exploring the genetic 388 

underpinnings of the entire spectrum of facial shape variation. These observations suggest the 389 

possibility of optimization. For example, it could be valuable for future studies to investigate how 390 

to generate a minimal set of facial traits that maximizes genetic findings thereby alleviating some 391 

of the computational burden. Nonetheless, regardless of the category of phenotypes used, key 392 

craniofacial transcription factors were consistently identified, and the combined set of loci across 393 

all phenotyping categories yielded GO biological processes that were highly relevant to 394 

craniofacial shape. This underscores that different phenotyping approaches complement each 395 

other in the identification of genetic factors influencing facial shape. 396 
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In this comprehensive study, we conducted a thorough evaluation of various univariate 397 

phenotyping methods for the characterization of human facial shape. These methods were 398 

categorized into three groups, which encompassed anthropometric traits, traits derived through 399 

unsupervised dimension reduction techniques, and supervised resemblance-based traits. Our 400 

findings expand the current understanding of the genetic relevance of various univariate traits, 401 

including their SNP-based heritability and GWAS discovery rates. Traditional anthropometric 402 

traits, which are derived from a set of landmarks with clear anatomical meaning, exhibit high 403 

SNP-based heritability, making them suitable traits for genetic investigations. Though, their 404 

limitation mainly lies in their fundamentally incomplete morphological description, especially 405 

when the number of landmarks is limited. On the other hand, dimension reduction methods, 406 

which despite lacking a clear biological meaning, can more fully capture morphological variation 407 

and subsequently identify a good number of genomic loci in GWAS. However, our analyses have 408 

shown that for the purpose of GWAS analysis, training an AE network is likely not worth the hefty 409 

time investment as it identified fewer independent genomic loci compared to PCA. As an 410 

alternative, our study has expanded on the idea of supervised resemblance-based phenotypes 411 

by using facial gestalts from 25 genetic conditions as well as randomly selected and extreme, 412 

non-clinical facial gestalts. While resemblance scores to randomly selected facial gestalts are easy 413 

to acquire and have demonstrated their potential to capture genetically relevant facial shape 414 

variations in GWAS, resemblance scores to extreme and syndromic facial gestalts may be useful 415 

in the search of rare genetic variants in future studies. Overall, this work investigated various 416 

types of univariate phenotyping strategies for facial shape, which could potentially be extended 417 
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to other morphological structures, such as brain shape, providing valuable references for future 418 

research. 419 

Materials and methods 420 

Dataset and preprocessing 421 

The analysis included participants with typical-range facial shape of European descent from 422 

independent population-based cohort studies conducted in the United States (US, 𝑛𝑈𝑆 = 4,680) 423 

and the United Kingdom (UK, 𝑛𝑈𝐾 = 3,566). In our previous work [5], this dataset (referred to as 424 

the EURO dataset) was used for a multivariate GWAS study on facial morphology. The US samples 425 

originated from three independent data collections: the 3D Facial Norms cohort [41] (3DFN) and 426 

from studies at the Pennsylvania State University (PSU) and Indiana University-Perdue University 427 

Indianapolis (IUPUI). Institutional review board approval was obtained at each recruitment site, 428 

and all participants gave their written informed consent before participation. The UK samples 429 

were part of the Avon Longitudinal Study of Parents and their Children [42,43] (ALSPAC). Ethical 430 

approval for the study (Project B2261: “Exploring distinctive facial features and their association 431 

with known candidate variants”) was obtained from the ALSPAC Ethics and Law Committee and 432 

the Local Research Ethics Committees. Information on the different genotyping platforms, 433 

imputation, and quality control can be found in [5]. Intersection of imputed and quality-434 

controlled SNPs across the US and UK datasets yielded 7,417,619 SNPs for analysis. The 3D facial 435 

surface images were registered using the MeshMonk [25] registration framework in MATLAB 436 
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(R2017b) as described in [5]. In total, 8,246 unrelated participants with recent European ancestry 437 

passed genotyping, imaging, and covariate quality control, and were used for analysis. 438 

We used a subset from the syndromic face dataset in our previous work [44], where it was 439 

originally applied for a syndrome classification task. This subset was obtained from two databases: 440 

1) the FaceBase repository “Developing 3D Craniofacial Morphometry Data and Tools to 441 

Transform Dysmorphology, FB00000861” [45]; 2) Peter Hammond’s legacy 3D dysmorphology 442 

dataset hosted at the KU Leuven, Belgium [46]. Syndromes can be categorized based on whether 443 

the underlying genetic conditions can be diagnosed based on typical facial characteristics [44]. In 444 

this study, we focused on syndromes with typical facial features falling into category A and B as 445 

defined in [44], including 25 out of the total 51 syndromes (details in supplementary file 3 Table 446 

S1). Overall, there were 1,784 3D syndromic facial images and a control group of 54 individuals 447 

unrelated to patients with known genetic syndromes. These control images were used to 448 

determine whether the average syndromic images were significantly different from those of the 449 

healthy controls for each syndrome group. 450 

The 3D facial surface meshes, comprising 7,160 dense quasi-landmarks were aligned using 451 

generalized procrustes analysis (GPA), symmetrized, and subsequently adjusted for age, age 452 

squared, sex, weight, height, facial size, camera system, and the first 4 genomic ancestry PCs 453 

using PLS regression (function ‘plsregress’ from MATLAB R2022b). The same procedure was 454 

performed independently for the nose, which was obtained by applying the data-driven 455 

hierarchical facial segmentation method described in [4,5]. Essentially, facial segments were 456 

defined by grouping strongly correlated vertices using hierarchical spectral clustering [4,47]. The 457 

strength of correlation between quasi-landmarks was measured using Escoufier’s RV coefficient 458 
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[48,49]. Subsequently, the RV coefficient was used to construct a similarity matrix that defined 459 

the formation of facial segments. As shown in Fig 1.A, the highlighted nose module consists of 460 

758 vertices. 461 

Facial phenotyping strategies 462 

In this study, we explored three categories of phenotyping methods: the first category involved 463 

anthropometrics traits, exemplified by inter-landmark distances; the second category 464 

encompassed latent scores derived through dimensionality reduction methods such as PCA and 465 

AE; and finally, resemblance-based traits were defined as the 1 - cosine of the Mahalanobis angle 466 

between the vectors of the target sample (extreme/syndromic/random gestalts) and each 467 

sample in the EURO cohort. 468 

Inter-landmark distances 469 

Since the images were symmetrized, we focused on 24 anatomical facial landmarks on the right 470 

half of the face, including the facial midline (Fig 1.A). Most landmarks have been used in previous 471 

GWASs of facial variation and have shown relatively high heritability [10,17]. The phenotypes 472 

were computed as inter-landmark Euclidean distances between landmarks (in total 276 for face, 473 

10 for nose). We followed a semi-automatic landmarking procedure as described in [25] using 474 

MeshMonk to position the landmarks onto all samples. First, a set of randomly selected facial 475 

scans (N=5) was manually landmarked three times by two observers. Subsequently, the average 476 

positions among iterations were calculated for each landmark, and the resulting placements 477 

were transferred to the template through barycentric coordinate conversion. These average 478 

placements on the template served as the foundation for the automated landmark placements. 479 
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Finally, since the faces are in the same coordinate system as the original template, the averaged 480 

landmark positions could be automatically transferred to the entire dataset. The facial template 481 

in Wavefront (.obj) format, the coordinates of 24 facial landmarks and 5 nasal landmarks on this 482 

template can be found in source data. 483 

Unsupervised dimensionality reduction of dense quasi landmarks 484 

Principal component analysis 485 

Principal component analysis (PCA) simplifies complex facial variation by transforming high-486 

dimensional mesh configurations into a small number of uncorrelated features, i.e., principal 487 

components (PCs). The original dense landmark configurations were structured into a three-488 

dimensional matrix with dimensions 𝑁 (number of shapes), 𝐿 (7,160 quasi-landmarks), and 3 (x-489 

, y-, and z-coordinates of each landmark). To perform PCA, we first mean-centered the data and 490 

reshaped it into a two-dimensional matrix with dimensions 𝑁 × 3𝐿. Subsequently, we applied 491 

low-rank singular value decomposition (SVD) to the mean-centered reshaped data matrix 𝑋 ∈492 

ℝ𝑁×3𝐿, defined as X = UΣVT (Fig 1.B). The diagonal matrix Σ contained the singular values and 493 

the columns of U and V consisted of the left and right singular vectors, respectively. The right 494 

singular vectors in V represented the PCs. Additionally, PCA was performed in combination with 495 

parallel analysis [50,51] to capture the major shape variance with the optimal number of 496 

variables. This resulted in 32 PCs explaining 99.21% of nasal shape variation and 70 PCs explaining 497 

98.08% of facial shape variation. 498 
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Auto-encoder  499 

An auto-encoder (AE) works as a non-linear generalization of PCA, comprising two main parts: an 500 

encoder and a decoder. The encoder compresses the data into a small number of variables and 501 

the decoder aims to reconstruct the original data from that compact representation. The 502 

advantage of using an AE is that it can model non-linear relationships that may be present in the 503 

data. However, as opposed to PCA, the disadvantage of an AE is that the latent variables are not 504 

necessarily uncorrelated.  505 

Fig 1.C shows the structure of the auto-encoder network used to extract features based on 3D 506 

facial meshes as previously used in [52]. The first several layers of the encoder consist of spiral 507 

convolutional layers, which reduce the size of the input. Each spiral convolutional layer consists 508 

of a spiral convolution operator and a mesh simplification step. Spiral convolution operators 509 

[53,54] are analogous to the grid-based convolutional filters in traditional convolutional neural 510 

networks and are designed as spirals starting at a center point and proceeding outwards from a 511 

random adjacent point. The mesh simplification step reduces the input size based on a 512 

predefined fixed scheme, achieved by performing quadric edge collapse on the template using 513 

MeshLab software [55]. The three spiral convolutional layers consist of 64, 64, and 64 learned 514 

filters, respectively, followed by the addition of two fully connected layers to further compress 515 

the data into the desired number of latent variables. The decoder architecture mirrors the 516 

encoder architecture. The model is trained to minimize the reconstruction error. Training 517 

strategy and implementation details can be found in supplementary file 2.  518 
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Supervised resemblance measurements 519 

Individual faces can be represented as single points or vectors situated in a multidimensional 520 

“face space”, where each dimension reflects a continuous axis of morphological variation [56,57]. 521 

To construct such a face space, we applied PCA to the symmetrized and GPA aligned quasi-522 

landmarks of the 8,246 samples, as mentioned above, and retained an equal number of PCs for 523 

consistency, i.e., 32 PCs explaining 99.21% of nasal shape variation and 70 PCs explaining 98.08% 524 

of facial shape variation. Note that, in principle, a shape space can alternatively be obtained using 525 

a different dimension reduction method. In our space, each face could be represented as a vector 526 

encoding the scores along each PC. In other words, the vector representation of a single face 527 

represented the extent to which the facial features encoded by each PC were present within that 528 

face. Following the idea that the resemblance between two faces can be measured by the 529 

correlation between their features, we quantified the facial resemblance of one face to another 530 

as the cosine distance derived from the angle enclosed by their feature vectors in a Mahalanobis 531 

standardized space (Fig 1.D) [58]. To obtain resemblance-based scores for GWAS analysis, we 532 

calculated facial resemblance scores between each face from the cohort and a specific facial 533 

example, whereby we considered different possibilities for the choice of facial example. 534 

In a first scenario, we considered the facial example to be a randomly selected face from the 535 

cohort and calculated resemblance-based facial phenotypes for GWAS as the cosine distance 536 

between the vector of the EURO cohort faces and the vector of the selected random facial 537 

example. We gathered additional resemblance-based facial phenotypes by selecting additional 538 

randomly selected facial examples. A second category includes the resemblance of the EURO 539 

cohort to an extreme facial example. To do so, we first ranked all the individuals based on their 540 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.06.06.597731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597731


 27 

Mahalanobis distance from the estimated mean face, which could be represented as the origin 541 

of the face space. Subsequently, we selected the top k (desired dimension) individuals that were 542 

located most peripherally in the face space. Each sample from the EURO cohort was then scored 543 

by computing the cosine distance between its vector and the vector of each individual extreme 544 

facial example. A third category included resemblance to syndromic faces. We projected 1,784 545 

syndromic faces from 25 distinct syndromes into the learned PCA space based on the EURO 546 

cohort and computed the average shape from each syndrome group. Using a permutation testing 547 

framework as described in [23], we tested which of the average syndromic faces were 548 

significantly different from the healthy controls and subsequently removed any syndromes 549 

without any distinct (P>0.05) characteristics (n=0), leaving 25 for further analysis. We repeated 550 

this procedure for the nose, where 23 out of 25 syndromes were considered for further analysis 551 

(details of syndrome groups in supplementary file 3 Table S1). Resemblance-based phenotypes 552 

for GWAS were obtained by measuring the cosine distance between the EURO cohort and the 553 

syndromic facial gestalts, which were calculated as the average face per syndrome. 554 

Genome-wide association meta-analysis 555 

For each univariate trait, GWASs were conducted in the US and UK cohorts independently using 556 

linear regression (function ‘regstats’ from MATLAB 2022b) where SNPs were coded under the 557 

additive genetic model (0, 1, 2). No further adjustment for covariates was necessary since facial 558 

surface scans were already adjusted prior to the calculation of any univariate phenotype (see 559 

Dataset and preprocessing). This generated effect size and standard error estimates for the US 560 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.06.06.597731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597731


 28 

and UK cohort separately which were then meta-analyzed using the inverse-variance weighted 561 

method [59]. Meta P-values were computed using a two-tailed test. 562 

Aggregation of multiple GWAS studies 563 

To investigate the number of identified genetic loci under different numbers of traits, we 564 

gradually increased the absolute numbers of traits in each phenotype category. For nasal shape, 565 

the experiments were conducted with absolute numbers of traits equal to [1, 5, 10, 20, 30, 50, 566 

100]. Since there were a limited number of inter-landmark distances and syndromic groups, the 567 

absolute numbers of traits were set to [1, 2, 4, 6, 8, 10] and [1, 5, 10, 23], respectively. Similarly, 568 

for facial shape, the experiments were conducted with absolute numbers of traits equal to [1, 10, 569 

30, 70, 100, 200]. The absolute numbers of traits based on resemblance to syndrome gestalts 570 

were set to [1, 10, 20, 25]. 571 

To aggregate multiple GWASs on univariate traits within a phenotype group, we employed 572 

Tippett’s minimal-p meta-approach [60]. Furthermore, for each aggregation, we controlled for 573 

the additional multiple testing burden by estimating the number of independent traits (i.e., the 574 

effective number of traits) within the group. This adjustment allowed us to correct the genome-575 

wide significance threshold (P < 5e-8) to a group-wide significance threshold (5e-8 divided by the 576 

effective number of traits). Since PCA yielded mutually uncorrelated univariate features, the 577 

number of independent phenotypes was equal to the number of PCs used. For all other methods, 578 

this number was estimated using permutation testing [61]. Specifically, each of 7,417,619 SNPs 579 

was randomly permuted and the same GWASs were repeated once. This allowed to estimate the 580 

null-distribution of the minimum P-values for each SNP across the set of univariate traits. The 581 
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number of independent phenotypes was then estimated as 0.05 divided by the 5th percentile of 582 

this null distribution [61]. 583 

SNP-based heritability estimation  584 

SNP-heritability is defined as the proportion of phenotypic variance that is explained by additive 585 

genetic effects of SNPs. First, SNPs were intersected with the HapMap3 SNPs and any SNP with 586 

non-matching alleles was removed, as well as SNPs within the major histocompatibility complex 587 

region. The SNP heritability of each univariate trait was then estimated with LDSC (published 588 

software https://github.com/bulik/ldsc/) [9] using the GWAS summary statistics of the EURO 589 

dataset. European derived LD scores were used in LDSC (downloaded from 590 

https://doi.org/10.5281/zenodo.7768714).  591 

We conducted a two-tailed t-test to compare the mean SNP-heritability between groups of 592 

phenotypes. The results were adjusted for multiple testing using the Benjamini-Hochberg 593 

procedure [62] (Fig S1 in supplementary file 1). 594 

Identification of genetic loci 595 

Peak calling was performed in three steps, starting with the SNPs that reached the adjusted 596 

genome-wide significance threshold (5 x 10-8 divided by the effective number of traits). First, all 597 

SNPs within ±250 kb of the most significant SNP, as well as those within 1 Mb and in LD (r2 >598 

10−2) were clumped into a single locus represented by the most significant (lead) SNP. This was 599 

repeated until all SNPs were assigned a locus. Next, any two loci were merged if the 600 

representative lead SNPs were within 10 Mb and in LD ( r2 > 10−2 ). This locus was then 601 
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represented by the SNP with the lowest P-value. Lastly, any peaks represented by a single SNP 602 

below the adjusted genome-wide significance threshold were disregarded to improve 603 

robustness. 604 

Gene annotation 605 

The most likely candidate gene per lead SNP was identified through a two-step process. First, we 606 

utilized GREAT (v.4.0.4) [63] with default settings and the Table Browser of the UCSC Genome 607 

Browser [64] for gene annotation. Then, we conducted literature searches to further support our 608 

findings, based on the gene lists associated with facial morphology provided in [5].  609 

  610 
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Figures 611 

Fig 1. Overview of phenotyping methods. (a) inter-landmark Euclidean distances computed 612 
between 24 anatomical facial landmarks. The 5 nasal landmarks in the blue nasal region are 613 
highlighted in red. (b) principal component analysis, which is based on a low-rank singular value 614 
decomposition (SVD) applied to a reshaped representation of the 3D shape data, where matrix 615 
multiplication is denoted by ∙. (c) an auto-encoder network. The encoder consists of three spiral 616 
convolutional layers, followed by two fully connected layers. The decoder architecture mirrors 617 
the structure of the encoder. (d) resemblance-based measures, defined as the cosine distance 618 
operating on the angle between the target vector (e.g., a random face, an extreme face) and a 619 
sample vector. 620 

 621 

 622 

 623 

 624 
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Fig 2. Comparison of SNP-based heritability between phenotyping categories. The colors 625 
represent different categories of traits: green for inter-landmark distances (DISTANCE), dark blue 626 
for traits extracted by auto-encoder (AE), light blue for traits extracted by principal component 627 
analysis (PCA), light red for resemblance scores to randomly selected facial examples (RANDOM), 628 
medium red for resemblance scores to extreme facial examples (EXTREME), and dark red for 629 
resemblance scores to syndrome facial archetypes (SYNDROME). 630 

 631 

  632 

 633 

Fig 3. The interplay among the dimensionality of traits, the number of significant genetic loci, 634 
and the phenotypic variation. We compared nasal shape phenotypes (left columns) and full 635 
facial shape phenotypes (right columns) in terms of (a) the effective number of traits, (b) the 636 
effectiveness of identifying independent genetic loci through GWAS, and (c) the phenotypic 637 
variation captured by traits and their corresponding number of significant genetic loci in GWAS. 638 
The colors represent different categories of traits: green for inter-landmark distances 639 
(DISTANCE), dark blue for traits extracted by auto-encoder (AE), light blue for traits extracted by 640 
principal component analysis (PCA), light red for resemblance scores to randomly selected 641 
gestalts (RANDOM), medium red for resemblance to extreme gestalts (EXTREME), and dark red 642 
for resemblance scores to syndromic gestalts (SYNDROME). Unlike PCs, which are ordered 643 
according to descending explained variance, and resemblance scores to extreme gestalts based 644 
on the cosine distance to the mean shape, there is no specific order within other categories of 645 
traits. Therefore, given a fixed absolute number of traits, we randomly selected a subset 10 times 646 
from the full set of inter-landmark distances and resemblance to syndromic gestalts. Additionally, 647 
10 replicates were performed for generating multiple AE latent dimensions and resemblance to 648 
random gestalts under different random initializations. The error bars represent the variation in 649 
results obtained from these 10 replicates. 650 
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 651 

 652 

Fig 4. Comparing phenotypes in terms of overlapping genetic findings from GWAS. The number 653 
of overlapping genetic loci (within +/-250kb) is given in blue and the number of overlapping 654 
genes, annotated using GREAT, in green. The significant genetic loci were identified using the 655 
optimal number of effective traits, i.e., when the number of independently significant genetic 656 
loci after multiple testing correction was at its maximum. This maximal total number of genetic 657 
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loci per phenotyping category is displayed at the upper-right corner of the diagonal, and the 658 
corresponding number of annotated genes is displayed at the lower-left corner of the diagonal. 659 
Phenotypes include inter-landmark distances (DISTANCE), traits extracted by auto-encoder (AE), 660 
traits extracted by principal component analysis (PCA), resemblance scores to randomly selected 661 
gestalts (RANDOM), resemblance scores to extreme gestalts (EXTREME), and resemblance scores 662 
to syndromic gestalts (SYNDROME). To show the variability in the results introduced by random 663 
initializations on AE, we provide the results of three replicates denoted as AE1, AE2, and AE3. 664 
Similarly, we conducted three replicates for resemblance scores to randomly selected gestalts, 665 
denoted as RANDOM1, RANDOM2, and RANDOM3. 666 

 667 
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take part in the study. The total sample size for analyses using any data collected after the age of 920 
seven is therefore 15,447 pregnancies, resulting in 15,658 foetuses. Of these 14,901 children 921 
were alive at 1 year of age. Consent for biological samples has been collected in accordance with 922 
the Human Tissue Act (2004). Genome wide genotyping data was generated by Sample Logistics 923 
and Genotyping Facilities at Welcome Sanger Institute and LabCorp (Laboratory Corporation of 924 
America) using support from 23andMe. 925 

All relevant data to run future replications are provided online 926 
(https://doi.org/10.6084/m9.figshare.24867063.v1). This includes the facial template used, nasal 927 
landmark label, and mesh simplification scheme in AE models.  928 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 7, 2024. ; https://doi.org/10.1101/2024.06.06.597731doi: bioRxiv preprint 

https://www.facebase.org/
http://www.bristol.ac.uk/alspac/researchers/our-data/
https://doi.org/10.1101/2024.06.06.597731


 42 

Code availability 929 

KU Leuven provides the MeshMonk [25] v.0.0.6 spatially dense facial-mapping software, free to 930 
use for academic purposes (https://github.com/TheWebMonks/meshmonk). Matlab R2017b 931 
implementations of the hierarchical spectral clustering to obtain nasal segmentation are 932 
available from a previous publication [47] (https://doi.org/10.6084/m9.figshare.7649024). Code 933 
for training AE models is available at https://github.com/mm-yuan/autoencoder_3dface. 934 

The analyses in this work were based on functions in Matlab R2022b, Python v3.7.8, MeshMonk 935 
v0.0.6, MeshLab v2020.03, LDSC v.1.0.1, GREAT v4.0.4. 936 
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