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Abstract 
Parkinson's disease (PD) is a progressive neurological motor control disorder. A key 

feature is the loss of midbrain dopaminergic neurons and the accumulation of aggregated 

alpha-synuclein (α-syn). No current treatment is on the market that slows or halts disease 

progression. Previous studies have shown that glucagon-like peptide-1 (GLP-1) receptor 

agonists have neuroprotective effects in animal models of PD. In addition, in a phase II 

clinical trial, the GLP-1 receptor agonist exendin-4 has shown good protective effects in PD 

patients. In the present study, we have investigated the neuroprotective effects of the GLP-1 

analogues semaglutide (25nmol/kg ip. once every two days for 30 days) and liraglutide 

(25nmol/kg ip. once daily for 30 days) in the chronic MPTP mouse model of PD. Both drugs 

are currently on the market as a treatment for Type II diabetes. Our results show that both 

semaglutide and liraglutide improved MPTP-induced motor impairments. In addition, both 

drugs rescued the decrease of tyrosine hydroxylase (TH) levels, reduced the accumulation of 

α-syn, alleviated the chronic inflammation response in the brain, reduced lipid peroxidation, 

and inhibited the mitochondrial mitophagy signaling pathway, and furthermore increased 

expression of the key growth factor GDNF that protects dopaminergic neurons in the 

substantia nigra (SN) and striatum. Moreover, the long- acting GLP-1 analogue semaglutide 

was more potent compared with once daily liraglutide in most parameters measured in this 

study. Our results demonstrate that semaglutide may be a promising treatment for PD. A 

clinical trial testing semaglutide in PD patients will start shortly. 

 

Key words: insulin; growth factors; oxidative stress; inflammation; GLP-1; incretin 
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1. Introduction 
 

Parkinson disease (PD) is the second most common degenerative disease characterized by 

progressive loss of dopaminergic neurons in the substantia nigra pars compacta, motor 

impairments, and deposition of intraneuronal inclusions known as Lewy bodies [1]. The main 

symptoms are resting tremors, muscular rigidity, bradykinesia, and postural and gait 

abnormalities [2]. Recently, studies have shown a link between PD and type 2 diabetes 

(T2DM), another common chronic neurodegenerative disorder characterized by progressive 

hyperglycemia, pancreatic β-cell dysfunction and insulin resistance (IR) in peripheral tissues 

[3]. Both PD and T2DM are age-related chronic diseases, and these also share several 

genetic susceptibilities, such as single nucleotide polymorphisms in the growth factor 

signaling kinase gene Akt, which can increase individual’s risk for developing PD and 

diabetes [4]. Insulin signaling was found to be impaired in the brains of PD patients, 

impairing energy utilization and cell repair [5-7]. Insulin is a key growth factor that protects 

neurons [8, 9].  

 Drugs that had been initially developed to treat type II diabetes have been re-purposed as 

treatments for Parkinson’s disease [10, 11]. These drugs are long-lasting, protease resistant 

mimetics of the hormone and growth factor glucagon-like peptide -1 (GLP-1) [12-14]. GLP-1 

is neuroprotective and can re-sensitize insulin signaling [15-17]. The GLP-1 mimetic 

exendin-4 (exenatide, Bydureon), which is on the market to treat T2DM, showed a 

therapeutic effect in different animal models of PD [18-21]. Exendin-4 was protective in a 

pilot clinical trial in PD patients (NCT01174810)[22, 23]. Importantly, a phase II clinical trial 

showed protective effects in PD patients even 3 months after treatment had been 

discontinued[24]. Liraglutide is a GLP-1 analogue [25, 26] that has an extended survival time 

in the blood stream and has a half-life of approximately 12 hours in humans [27, 28]. 

Therefore, it requires a once-daily dosing for treating diabetes [29]. Liraglutide also showed 

neuroprotective effects in animal models of PD and Alzheimer’s disease [30, 31]. Liraglutide 

is currently being tested in a phase II trial in PD patients (clinical trial identifier 

NCT02953665).  

 Semaglutide is a modification of liraglutide that is protease-resistant by changing the amino 
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acid at position 8 and an extended spacer for the attached fatty acid [32], and is on the market 

as a new once- weekly drug to treat type II diabetes. It has been approved in the USA and 

Europe as a treatment for diabetes [33, 34]. A phase II clinical trial testing semaglutide in PD 

patients will start early 2019 (NCT03659682). Previously, we have investigated the 

neuroprotective effects of the once-weekly GLP-1 analogue semaglutide and compare it with 

liraglutide in the acute MPTP mouse model of PD [35]. However, the acute model is not 

considered to be a good representation of the pathology observed in PD, as the disease 

develops slowly over time. Therefore, we investigated these neuroprotective effective in the 

chronic MPTP treatment PD mouse model. Additionally, we analyzed the effects of the drugs 

on a-synuclein expression and on the impairments of autophagy that has been observed in the 

MPTP mouse model. If autophagy is impaired in the disease, proteins such as a-synuclein 

can accumulate and aggregate in the cell. As semaglutide will be tested in PD patients in a 

clinical trial, it is of vital importance to investigate the underlying molecular mechanisms of 

its actions. 

 
2. Materials and methods 

 
2.1. Chemicals and peptides 

Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was purchased from Sigma-Aldrich (St 

Louis, MO, USA). Other chemicals used were of the highest quality commercially available. 

Semaglutide and liraglutide (peptide purity: 95.77%) was purchased from Synpeptide Co. 

(Shanghai, China). The quality was tested using HPLC and MALDI-TOF analysis. 
 
The amino acid sequence of liraglutide: 
HAEGTFTSDVSSYLEGQAAK[(γE)-(Pal)]EFIAWLVRGRG-OH 
Pal = palmitoyl acid 
 
The amino acid sequence of semaglutide [32]: HXEGTFTSDVSSYLEGQAAKN6-(N-(17-
carboxy-1-oxoheptadecyl)-L-gamma-glutamyl-2-(2-(2-aminoethoxy)ethoxy)acetyl-2-(2-(2-
aminoethoxy)ethoxy)acetyl)EFIAWLVRGRG-OH 
X = aminoisobutyric acid; 
 

2.2. Animals and drug treatments 
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Male C57BL/6 mice 8 weeks old (20-25g) were purchased from the Experimental Animal 

Center, Shanxi Medical University. The animals were maintained on 12 hour light/dark cycle 

and provided food and water ad libitum. Mice were randomly divided into six groups (N=12 

animals per group). A: control group treated with saline alone; B: liraglutide group treated 

with liraglutide (25nmol/kg ip. once daily for 30 days); C: semaglutide group treated with 

semaglutide (25nmol/kg ip. once every two days for 30 days), D: MPTP group treated with 

MPTP alone (once daily 20mg/kg ip. for 30 days); E: MPTP (once daily 20mg/kg ip. for 30 

days) + liraglutide treated group (25nmol/kg ip. once daily for 30 days). F: MPTP (20mg/kg 

ip. once daily for 30 days) + semaglutide- treated group (25nmol/kg ip. once every two days 

for 30 days). At the end of drug treatments, behavioral changes, neuronal damage, 

inflammatory markers, and other biomarkers were assessed. 

All animal experiments were approved by the ethics committee of Shanxi Medical 

University. 
 

2.3. Behavioral assessment 
2.3.1. Open-field test 
The open-field test is used to evaluate locomotor and exploratory activity of PD mice and 

was conducted on the 31th day after MPTP treatment. The open-field apparatus consisted of a 

circular arena (35cm diameter floor and 40cm high walls), and a computer tracking system 

(Etho Vision XT software, Noldus information technology, Wageningen, Netherlands). Each 

mouse was placed in the center of the apparatus, and tracking started immediately. After 

acclimatizing for 10 min, the distance travelled by the animal was recorded by the tracking 

system. The area was wiped with 75% alcohol and dried between each trial. 

 

2.3.2. Rotarod performance 

The rotarod test is to measure motor coordination in the mouse model of PD. The rotarod 

equipment (YLS-4C, Academy of medical sciences in Shandong, China) consisted of a 

rotating spindle and five individual compartments. All mice were pre-trained for 3 days prior 

to drug administration. The test consisted of three consecutive runs with a gradual increase in 

rpm up to a maximum 30 rpm for up to 180 seconds. The length of time was recorded as the 

latency period to fall. The experiment was repeated three times for each animal at 10 min rest 
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intervals. 

 

2.3.3. Footprint gait test 

The footprint test was described previously [35]. Briefly, the animal forelimbs were dipped in 

blue ink and the hind limbs in red ink to record footprints as they walked through a dark 

tunnel (10Í10Í50 cm). The footprints were recorded on a clean sheet of white paper placed 

on the floor of the tunnel. The two initial steps were excluded from the measurements, and 

only steps performed in a straight line were recorded. To avoid differences in the stride length 

as a result of velocity variations, the footprints were only recorded when the mice walked 

along the tunnel with a regular velocity, and excluding the mice that performed the test with 

perceptible velocity alterations. Stride lengths were determined by measuring the distance 

between each step on the same side of the body. The length of the shortest stride was 

subtracted from the length of the longest stride to determine the stride variability. 

 

2.3.4. Grip Strength Test 

Grip strength was measured by the digital grip strength meter 47200 (Ugo Basile, Italy). Grip 

strength testing is commonly used as an objective measure of muscle strength in the front 

legs. All mice were pre-trained for 3 days prior to test. Each mouse was placed in the 

platform apparatus, and to grasp a lever that can transmit the force value by its forelimbs, 

then they were pulled at the tail until release of grip to measure the muscle strength of their 

forelimbs. Each group was tested 3 times and measured in Newtons (N). If the third value 

was highest, the subject was tested until the value stopped increasing. The maximum muscle 

strength of each mouse was taken for statistical analysis. 

 

2.4. Brain tissue preparation 

All animals were killed on the 31th day of MPTP injection. After ethyl carbamate 

anesthetization, the brains of 6 mice per group were selected and the substantia nigra and 

striatum were dissected and immediately frozen at ‒ 80℃ for immunoblot analysis. Another 

6 mice per group were intracardially perfused with 20 ml saline and then fixed with 20 ml of 

cold 4% paraformaldehyde (PFA). Brains were immediately removed and post-fixed in 4% 
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PFA 24 hours for immunohistochemistry analysis. 

 

2.5. Immunohistochemistry 

The fixed brain tissue samples were embedded in paraffin, and sections were cut at 4μm with 

a semiautomatic microtome (Leica, Wetzlar, Germany). The sections encompassing the 

substantia nigra pars compacta (SNpc) and the striatum were placed on glass slides, then the 

paraffin was removed from the tissue sections with xylene, and the sections were rehydrated 

in descending concentrations of ethanol solutions. Then the sections were put into H2O2 

(3%) for 10 min to block the activity of endogenous peroxidase. Antigen retrieval was 

performed by heating in 10 mmol/L citrate buffer for 10 min. After blocking with 5% BSA, 

sections were incubated with the primary antibody for tyrosine hydroxylase (TH) (rabbit anti-

TH; 1:200; cat. No. ab75875, Abcam, Cambridge, UK), GFAP (rabbit anti-GFAP; 1:200; cat. 

No. PB0046, Boster Biotechnology Co., Ltd. Wuhan, China) and IBA1 (goat anti-IBA1; 

1:200; cat. No. PB0517, Boster Biotechnology Co., Ltd. Wuhan, China), 4-HNE (rabbit anti-

4-HNE; 1:400; cat. No. ab46545, Biosynthesis Biotechnology Co., Ltd. Beijing, China) at 

37℃ for 1 hour. Then they were rinsed in PBS and incubated a secondary peroxidase-

conjugated antibody kit (Boster, Wuhan, China) at 37℃ for 0.5 h. Stained sections were 

viewed under a Zeiss light microscope, and images were captured by a digital camera (Motic 

BA410; Motic, Xiamen, China). Quantitative analysis of DA neurons in SNpc was carried 

out in the region spanning from -2.92 mm to -3.40 mm relative to bregma. The region 

corresponding to the SNpc was clearly delineated, according to the mouse brain atlas of 

Paxinos and Franklin [36]. The magnification was kept the same for all measurements. Each 

mouse had one section analyzed with n=6 per group. Numbers of GFAP, IBA1, 4-HNE 

positive cells in SNpc were determined using Image-pro plus 6.0 software. All data were 

expressed as a percentage of control values. Abbreviations: 4-Hydroxynonenal (4-HNE); 

Glial fibrillary Acid Protein (GFAP); ionized calcium-binding adapter molecule 1 (IBA-1); 

B-cell lymphoma 2 (Bcl-2); Bcl-2 associated X protein (BAX); DA =dopamine 

 

2.6. Western blots 

Brain tissue with substantia nigra was stored at -80 °C for western blot analysis. The tissue 
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was weighed and cut into pieces in cold radio immune precipitation (RIPA) buffer (Beyotime 

Institute of Biotechnology, Shanghai, China). Two hours later, tissue lysates were added to 

phenylmethanesulfonyl fluoride (PMSF) and put on ice for 30 minutes. Tissue lysates were 

obtained by centrifugation at 12,000 rpm for 20 min at 4 C°. Protein concentration was 

measured by the bicinchoninic acid protein assay (Boster Biotechnology Co., Ltd. Wuhan, 

China). Samples mixed with loading buffer to the same concentration were boiled for 5 min. 

Samples with equivalent amounts of protein were run on 8%, 10% or 12% SDS-

polyacrylamide gel and transferred protein band onto polyvinylidene difluoride (PVDF) 

membranes. Then, the membranes were blocked with 5% bovine serum albumin for two 

hours. The membranes were probed overnight at 4 °C with primary antibodies that 

specifically detect Bcl-2 (1:1000; #BS70205, Bioworld Technology, lnc. MN, USA), Bax 

(1:500; #BS2538, Bioworld Technology, lnc. MN, USA), and β-Actin (1:5000; #ab8227, 

Abcam, Cambridge, UK), α-Syn (1:1000; #2642, Cell Signaling Technology, lnc.), ATC7 

(1:000; #BS6046, Bioworld Technology, lnc.MN, USA), LC3 (1:1000; #L7543, Sigma-

Aldrich, lnc. USA)], Beclin 1 (1:000; #AP0768, Bioworld Technology, lnc. MN, USA), 

SQSTM1 (1:000; #AP6006, Bioworld Technology, lnc. MN, USA), or GDNF (1:500; 

#ab18956, Abcam, Cambridge, UK), followed by labeling with secondary antibodies (goat-

anti-rabbit -IgG-horseradish peroxidase, HRP), 1:5000; (Abcam, Cambridge, UK) shake for 2 

h. The relative immunoreactive bands were captured by a chemiluminescence imaging 

system (Sagecreation, Beijing, China), and visualized by using ECL-enhanced 

chemilluminescence (Boster Biotechnology Co., Ltd. Wuhan, China), and digitalized by the 

image analysis system of Quantity One 4.31 (Bio-Rad, Hercules, CA, USA). As an indicator 

for mitochondrial apoptosis, the ratio of BAX/Bcl-2 levels was computed and graphed. 

Abbreviations: autophagy chaperone mediator 7 (ATC7); sequestosome 1 (SQSTM1); 

1A/1B-light chain 3 (LC3); LC3 binding protein 62 (p62) 

 

2.7. Statistical analysis 

All data were expressed as means ± S.E.M. All analysis was conducted using GraphPad 

Prism (Graph-Pad software Inc., San Diego, CA, USA). Statistical significance was 

performed by one-way ANOVA for multiple comparisons followed by Tukey's Multiple 
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Comparison Test. Statistical significance was set at P < 0.05. 

 
3. Results 

 

3.1 Semaglutide and liraglutide normalized motor impairments induced by MPTP 

In the open field test, semaglutide alleviated the locomotor impairments induced by 

MPTP. A one-way ANOVA found an overall difference of distance travelled (F=13.19, 

P<0.0001) between all groups. There was no difference between control group and 

ns+liraglutide group and ns+semaglutide group. However a difference was found between the 

control groups and MPTP group (p<0.001). Furthermore, a difference was found between 

MPTP+liraglutide and MPTP group (p<0.01), and MPTP+semaglutide and the MPTP group 

(p<0.001). This shows that liraglutide and semaglutide were able to normalize the MPTP-

induced impairments in locomotor and exploratory activity of mice. There was no significant 

difference between MPTP + semaglutide group and MPTP + liraglutide groups (P>0.05). 

N=12 per group, see Fig.1a. 

In the rotarod test, a one-way ANOVA found an overall difference of the time spent on 

the rotating rod (F=37.87, P<0.0001) between all groups. There was no difference between 

control group and ns+liraglutide group and ns+semaglutide group. However a difference was 

found between the control group and MPTP group (p<0.001). Furthermore, a difference was 

found between MPTP+liraglutide and MPTP+semaglutide and the MPTP group (p<0.001). 

That is to say the two drugs were able to improve the bradykinesia and imbalance of mice 

induced by MPTP. Semaglutide was more effective than liraglutide(p<0.01). N=12 per group, 

see Fig.1b. 

In the Grip Strength Test, a one-way ANOVA found an overall difference of maximum 

muscle strength (F=35.86, P<0.0001) between all groups. There was no difference between 

control group and ns+liraglutide group and ns+semaglutide group, However a difference was 

found between the control groups and MPTP group (p<0.001). Furthermore, a difference was 

found between MPTP+liraglutide and MPTP+semaglutide and the MPTP group (p<0.001). 

That is to say the two drugs were able to improve the muscle strength of mice that was 
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impaired by MPTP. Semaglutide was more effective than liraglutide(p<0.05). N=12 per 

group, see Fig.1c. 

In the foot print test, a one-way ANOVA found an overall difference on the Step 

variation rate (F=27.61, P<0.0001) between all groups. There was no difference between 

control group and ns+liraglutide group and ns+semaglutide group. However a difference was 

found between the control groups and MPTP group (p<0.001). Furthermore, a difference was 

found between MPTP+liraglutide and MPTP+semaglutide and the MPTP group (p<0.001). 

That is to say the two drugs were able to improve the abnormal posture and gait of mice 

induced by MPTP. Semaglutide was more effective than liraglutide (p<0.05). N=12 per 

group, see Fig.1d. 

 

3.2 Semaglutide and liraglutide attenuated dopaminergic neuronal loss in the SN 

induced by MPTP 

In the histological analysis of the number of cells positive for the dopamine biomarker 

tyrosine hydroxylase (TH) in the substantia nigra, MPTP reduced the number of neurons 

significantly. In a one-way ANOVA with Tukey's multiple comparison test (F=42.12, p < 

0.0001), MPTP groups showed fewer TH positive neurons in the SN than saline-treated mice 

(p<0.001). There was a difference between MPTP+liraglutide and MPTP group (p<0.01), and 

a difference between MPTP+semaglutide and MPTP group (p<0.001). Semaglutide was more 

effective than liraglutide (p<0.05), see Fig. 2.  

 

3.3 Semaglutide and liraglutide alleviated astrocyte and microglia activation in the 

striatum 

When analysing GFAP (astrogliosis) levels in the striatum: In a one-way ANOVA with 

Tukey's multiple comparison test (F=432.2, p < 0.0001). There was no difference between the 

control group and the ns+liraglutide group and the ns+semaglutide group. GFAP levels in the 

MPTP group were found to be far higher in the striatum compared to the control group (P < 

0.001), a difference was found between the MPTP+liraglutide, MPTP+semaglutide and the 

MPTP group (p < 0.001), and semaglutide was more effective than liraglutide (p<0.05); N=6 

per group, see Fig. 3a. 



semaglutide is neuroprotective 

 11 

  When assessing IBA-1 (microgliosis) levels in the striatum: In a one-way ANOVA with 

Tukey's multiple comparison tests (F=187.2, p < 0.0001), there was no difference between 

the control group and ns+liraglutide group and the ns+semaglutide group. In the MPTP 

group, IBA-1 levels were found to be higher than the control group (p < 0.001). A difference 

was found between the MPTP+liraglutide, MPTP+semaglutide and the MPTP group (p < 

0.001), and the MPTP+semaglutide group differed from the MPTP+liraglutide group (p < 

0.001), demonstrating that liraglutide and semaglutide can reduced microgliosis. Semaglutide 

was the more potent drug. N=6 per group. See Fig. 3b. 

 

3.4 Semaglutide and liraglutide reduced lipid peroxidation in the striatum induced by 

MPTP 

In the immunohistochemical analysis, 4-HNE was monitored as an indicator of lipid 

peroxidation. A one-way ANOVA found an overall difference of 4-HNE expression in the 

SN (F=157.8, P<0.001); There was no difference between the control group and 

ns+liraglutide group and the ns+semaglutide group. In the MPTP group, 4-HNE levels were 

found to be higher than in the control group (p < 0.001), but identical to the 

MPTP+liraglutide group and MPTP+semaglutide group. This shows that the liraglutide and 

semaglutide drugs reduced 4-HNE levels (p < 0.001). The MPTP+semaglutide group differed 

from the MPTP+liraglutide group (p < 0.001), demonstrating that both liraglutide and 

semaglutide reduced 4-HNE levels. Semaglutide was the more potent drug. N=6 per group. 

See Fig. 4. 

 

3.5 Semaglutide and liraglutide reduced the levels of a-syn in the SN enhanced by 

MPTP treatment 

  In the western blot analysis, we investigated the levels of a-syn in the SN. A one-way 

ANOVA showed an overall difference (F=139.7, p<0.0001). In Tukey's multiple comparison 

tests, there was no difference between control group and ns+liraglutide group and 

ns+semaglutide group. In the MPTP group, a-syn levels were found to be higher than in the 

control group (p < 0.001), the MPTP+liraglutide group and MPTP+semaglutide group (p < 

0.001). Tthe MPTP+liraglutide group was different from the MPTP+semaglutide group (p < 
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0.01). This shows that both liraglutide and semaglutide drug reduced a-syn levels, and that 

semaglutide was more effective. N=4 per group. See Fig. 5. 

 

3.6 Semaglutide and liraglutide normalized the Bcl-2/BAX ratio in the SN impaired by 

MPTP 

The increase of Bax/Bcl-2 levels in the substantia nigra of mice induced by MPTP was 

reversed by the two drugs. A one-way ANOVA showed an overall difference (F=324.8, 

p<0.0001). In Tukey's multiple comparison tests, there was no difference between control 

group and ns+liraglutide group and ns+semaglutide group. The overall levels of the anti-

apoptotic signaling molecule Bcl-2 in SN was reduced by MPTP treatment, levels of the pro-

apoptotic signaling molecule Bax in SNpc was increased by MPTP treatment, and the ratio of 

Bax/Bcl-2 was increased (p< 0.001), compared with control group. Liraglutide and 

semaglutide partly decreased the ratio of Bax/Bcl-2 by enhancing Bcl-2 levels and decrease 

Bax levels (p< 0.001). Semaglutide was the more potent drug (p< 0.001). N=4 per group, see 

Fig. 6. 

 

3.7 Semaglutide and liraglutide increased autophagy-related proteins expression in the 

SN reduced by MPTP. 

In the substantia nigra, we investigated the expression of a set of autophagy-related (Atg) 

proteins. Protein expression of Beclin1, Atg7, LC3 and P62 significantly differs among 

groups as evident by one-way ANOVA analysis (p<0.0001). Tukey's multiple comparison 

tests demonstrated that insurmountable ER stress induced by MPTP significantly suppresses 

Beclin1, Atg7, LC3, and P62 expression. Semaglutide and liraglutide treatment significantly 

enhanced levels of Beclin1, Atg7, L3 and P62. Additionally, semaglutide was more effective 

than liraglutide. N=4 per group, see Fig. 7. 

 

3.8 Semaglutide and liraglutide increased GDNF expression in the SN reduced by 

MPTP. 

In the western blot analysis, we investigated the expression of GDNF in the SN. A one-

way ANOVA showed an overall difference (F=67.88, p<0.0001). In Tukey's multiple 
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comparison tests, there was no difference between the control group and ns+liraglutide group 

and ns+semaglutide group. In the MPTP group, GDNF levels were found to be lower than in 

the control group (p < 0.001), but identical to the MPTP+liraglutide group and 

MPTP+semaglutide group. This shows that the liraglutide (p < 0.01) and semaglutide (p < 

0.001) partly increased GDNF levels. Semaglutide was the more potent drug (p< 0.001) 

compared to liraglutide. N=4 per group. See Fig. 8. 

 

4. Discussion 
 

PD is characterized by the progressive functional loss of dopaminergic neurons in the 

SN. One hypothesis is that the progressive deterioration of SN dopaminergic neurons may be 

caused by misfolding and aggregation of the protein alpha synuclein, disruption of the 

autophagy system, and mitochondrial dysfunction [37]. 1-methyl-4-phenyl-1,2,3,6-tetra- 

hydropyridine (MPTP) is widely used to induce a Parkinson-like state in rodents [38, 39], 

which can cross the blood brain barrier. Then, MPTP is metabolized into the toxic cation1-

methyl-4-phenylpyridinium (MPP+) by monoamine oxidase B [40]. MPP+ can kill primarily 

dopamine-producing neurons in SN [41, 42]. MPP+ interferes with complex1of the 

mitochondrial electron transport chain, which leads to the production of free radicals and 

ultimately to neuronal death in the SN [43, 44]. The MPTP animal model is a commonly used 

model of PD as this chemical can induce a PD-like phenotype in humans [45]. 

   Our study demonstrates that both the GLP-1 analogue semaglutide and liraglutide 

effectively normalized locomotor and exploratory activity, improved bradykinesia, movement 

coordination and balance of mice, restored a weakening of muscle strength, and improved 

postural and gait abnormalities of MPTP-treated mice. These results are in agreement with 

our previous studies in the acute MPTP model [35]. Importantly, we have previously shown 

that GLP-1 mimetics do not affect food intake or insulin plasma levels in non-diabetic and 

non-obese animals [46]. We and others furthermore demonstrated that these drugs can enter 

the brain and are activate receptors on neurons [47-49].  

  Tyrosine hydroxylase (TH) is a key enzyme in the synthesis of the catecholamine 
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neurotransmitters [50] and is the principal regulator of dopamine synthesis in the CNS [51]. 

In order to investigate whether GLP-1could directly protect against MPTP-induced 

nigrostriatal degeneration, we measured the number of TH positive cells. Our results 

demonstrate that both drugs could increase the number in the SN, and show that the once-

weekly semaglutide was more effective than the once-daily liraglutide. Chronic inflammation 

is playing a central role in PD pathogenesis because the release of cytokines promotes disease 

progression [52, 53]. Damaged dopaminergic neurons and activated microglial cells can 

stimulate astrocytes into immune-active status [54]. Moreover , the status of astrocyte 

activation and the release of pro-inflammatory cytokines is associated with impairment of the 

nigrostriatal system of MPTP treated mice [41, 55]. Recently a study reported that the 

presence of activated microglia in the SN and putamen of patients with a PD diagnosis [56].	

Both central and peripheral inflammation responses are responsible for sustained progression 

of PD [57]. Our results demonstrate that both GLP-1 analogues can inhibit the inflammatory 

response. Importantly, semaglutide was more effective compared with liraglutide in our study 

where both drugs were tested at the same concentration. 

Oxidative stress is a key feature of PD and of chronic inflammation that drives disease 

progression [58]. One study found that lipid peroxidation and the level of 4-Hydroxynonenal 

(4-HNE) in SNpc are increased in PD [59]. 4-HNE is one of the markers of membrane lipid 

peroxidation induced by the excessive generation of reactive oxygen species (ROS) [60, 61]. 

The generation of ROS by MPTP administration is partly due to the inhibition of the 

mitochondrial complex I activity [62]. 4-HNE furthermore activates BAD, a sensor for 

mitochondrial dysfunction, and accelerates mitochondrial mitophagy [63]. Our study 

demonstrates that both drugs can reduce 4-HNE levels in the midbrain of the mouse induced 

by MPTP treatment, protecting cells of oxidative stress. Again, semaglutide was more potent 

compared with liraglutide in this experiment. 

The mechanisms underlying accumulation and aggregation of a-syn are considered to be 

based on over-expression and failure to clear a-syn by proteolysis and autophagy pathways 

[64, 65]. In addition, aberrant forms of a-syn, including oligomers and fibrils, are seen to 

interfere with normal cellular processes, promoting further aggregation of protein, leading to 

the spread of these toxic forms of a-syn from neuron to neuron, and ultimately to neuronal 
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death [66-68]. Oligomeric a-syn is proposed to play a central role in spreading protein 

aggregation in the brain with associated cellular toxicity, contributing to a progressive 

neurological decline. One study demonstrated that the cerebrospinal fluid (CSF) of patients 

with PD contained increased levels of a-syn oligomers when compared to controls [69]. We 

therefore decided to measure a-syn expression in the brain. We have previously shown that 

in the MPTP mouse model, a-syn expression is very much increased [63]. Our study 

demonstrates that the MPTP-induced increase of a-syn expression in the brain is reduced 

back to almost control levels by the drug, semaglutide again being more potent than 

liraglutide. 

Apoptosis (the most common form of programmed cell death) is closely related to 

mitochondrial function, because the intrinsic apoptosis pathway is linked to mitochondrial 

depolarization[70]. B cell leukemia/lymphoma 2 (Bcl-2) -family proteins regulate the 

intrinsic apoptosis pathway by controlling mitochondrial outer membrane permeability [71]. 

The anti-apoptotic protein Bcl-2 can bind to the pro-apoptotic protein BAX (Bcl-2-associated 

X protein) to form heterodimers that modulate apoptosis [72]. Therefore, we measured the 

ratio of Bax/Bcl-2 levels. Our result show that MPTP treatment led to a decline of Bcl-2 

levels and an increase of BAX in the SN, and GLP-1 analogues partly reversed this process. 

Our results show that the rate of mitophagy and eventually apoptosis is reduced in the brain 

after drug treatment. In addition, semaglutide showed an advantage compared with 

liraglutide. 

Autophagy removes misfolded proteins and damaged mitochondria to prevent apoptosis 

caused by mitochondrial dysfunction [73-75]. Some studies show that the autophagy-

lysosome system is impaired in PD animal models and evidence for this was also found in the 

analysis of postmortem PD brain tissue [76, 77]. In physiological conditions, apoptosis is 

blocked and autophagy maintains intracellular homeostasis; this balance is perturbed in PD 

[78, 79]. The activation of Beclin-1 leads to autophagosome formation and initiation of 

autophagy, and a reduced expression of this protein will impair this process. We also 

measured the conversion of microtubule-associated protein 1 light chain 3 beta-I/LC3B-I to 

LC3B-II which is important for the sequestration of the phagosome in autophagy. The 

conversion of LC3B-I to LC3B-II increased after GLP-1 treatment compare with the MPTP 
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group, and GLP-1 analogues upregulated beclin1 expression, indicating that GLP-1 signalling 

alleviates the inhibition of autophagy induced by MPTP. Autophagy dysfunction along with 

persistent ER stress can further trigger the excess accumulation of the autophagy adaptor 

protein p62, which contains a KEAP1 binding motif similar to the promotor of oxidative 

stress-reducing genes Nrf275 [80]. Accumulation of p62 leads to KEAP1 sequestration and 

inactivation, which, in turn, blocks nuclear Nrf2 localization and transcription of Nrf2 target 

genes [81]. This will lead to an impaired response to enhanced oxidative stress. These results 

are in line with our previous studies of liraglutide effects on autophagy [82]. 

Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent trophic 

factors that have been identified for midbrain dopamine (DA) neurons, and plays an 

important role in the postnatal survival of mesencephalic dopamine neurons [83, 84]. In 1993 

Glial cell line-derived neurotrophic factor (GDNF) was first been shown to protect embryonic 

dopaminergic neurons in vitro [85]. The therapeutic benefit of GDNF and NRTN has been 

demonstrated in phenotypic, toxin-induced (MPTP) rodent and nonhuman primate models of 

PD [86-89]. Our study demonstrates that the MPTP-induced loss of GDNF in the brain was 

reversed by both drugs, demonstrating that GLP-1 signalling can rescue the decrease of 

GDNF levels induced by MPTP. This is in line with previous studies [90, 91]. In addition, 

semaglutide showed an advantage compared with liraglutide  

In summary, our result showed that semaglutide and liraglutide normalized impaired 

motor activity, increased the number of TH positive neurons in the SN, reduced the 

expression of a-syn, and decreased inflammation, oxidative damage and mitophagy while 

increasing autophagy, and furthermore increasing GDNF expression. These conclusion 

confirm our previous findings that GLP-1 receptor agonists have neuroprotective effects in 

PD mouse models[15]. In this mouse model of PD, semaglutide appears to be more effective 

than liraglutide under the conditions chosen in this study. As both liraglutide and semaglutide 

are in clinical trials in PD patients, we will be able to see if this outcome translates into the 

clinic. 
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Fig. 1A. GLP-1 analogues protect from the MPTP-induced impairments in motor activity of 
mice.  A difference was found between the control group and MPTP group. Furthermore, a 
difference was found between MPTP+ liraglutide and MPTP+semaglutide and the MPTP 
group. NS= normal saline. The values represent the means±S.E.M. ***=p<0.001 compared 
with the control group. ##=p<0.01, ###=p<0.001 compared with the MPTP group. n=12. 
Fig. 1B. GLP-1 analogues improve the bradykinesia and imbalance of mice induced by 
MPTP. A difference was found between the control group and MPTP group. Furthermore, a 
difference was found between MPTP + liraglutide and MPTP+semaglutide and MPTP group. 
NS= normal saline. The values represent the means±S.E.M. ***=p<0.001 compared with the 
control group. ###=p<0.001 compared with the MPTP group. &&=p<0.01 compared with 
MPTP+liraglutide group. n=12. 
Fig. 1C. GLP-1 analogues improve the muscle strength weakening of mice induced by MPTP. 
A difference was found between the control group and MPTP group. Furthermore, a difference 
was found between MPTP + liraglutide and MPTP+semaglutide and MPTP group. NS= normal 
saline. The values represent the means±S.E.M. ***=p<0.001 compared with the control group. 
###=p<0.001 compared with the MPTP group. &=p<0.05 compared with MPTP+liraglutide 
group. n=12. 
Fig. 1D. GLP-1 analogues improve the abnormal posture and gait of mice induced by MPTP. 
A difference was found between the control group and MPTP group. Furthermore, a 
difference was found between MPTP+ liraglutide and MPTP+semaglutide and MPTP group. 
NS= normal saline. The values represent the means±S.E.M. ***=p<0.001 compared with the 
control group. ###=p<0.001 compared with the MPTP group. &=p<0.05 compared with 
MPTP+liraglutide group. n=12. 
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Fig. 2. GLP-1 analogues restored tyrosine hydroxylase (TH) positive dopaminergic neuron 
numbers in the substantia nigra. NS= normal saline. The values represent the means±S.E.M. 
***=p<0.001 compared with the control group. ##=p<0.01, ###=p<0.001 compared with the 
MPTP group. &=p<0.05 compared with MPTP+liraglutide group. n=6. Examples of 
micrographs are given. A: CONTROL; B: NS+LIRAGLUTIDE; C: NS+SEMAGLUTIDE; 
D: MPTP; E: MPTP+LIRAGLUTIDE; F: MPTP+SEMAGLUTIDE. Scale bar in image D: 
100 μm. 
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Fig. 3A: GLP-1 analogues reduced the astrocyte activation in the striatum of mice induced by 
MPTP. NS= normal saline. The values represent the means±S.E.M. ***=p<0.001 compared 
with the control group. ###=p<0.001 compared with the MPTP group. &&&=p<0.001 
compared with MPTP+liraglutide group. n=6. Examples of micrographs are given. A: 
CONTROL; B: NS+LIRAGLUTIDE; C: NS+SEMAGLUTIDE; D: MPTP; E: 
MPTP+LIRAGLUTIDE; F:MPTP+SEMAGLUTIDE. Scale bar in image D: 25 μm. 
Fig. 3B: GLP-1 analogues reduced the microglia activation in the striatum of mice induced 
by MPTP. NS= normal saline. The values represent the means±S.E.M. ***=p<0.001 
compared with the control group. ###=p<0.001 compared with the MPTP group. 
&&&=p<0.001 compared with MPTP+liraglutide group. n=6. Examples of micrographs are 
given. A: CONTROL; B: NS+LIRAGLUTIDE; C: NS+SEMAGLUTIDE; D: MPTP; E: 
MPTP+LIRAGLUTIDE; F:MPTP+SEMAGLUTIDE. Scale bar in image D: 25 μm. 
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Fig.4. GLP-1 analogues reduced the oxidative stress 4-Hydroxynonenal expression in the 
striatum of mice induced by MPTP. NS= normal saline. The values represent the 
means±S.E.M. ***=p<0.001 compared with the control group. ###=p<0.001 compared with 
the MPTP group. &&&=p<0.001 compared with MPTP+liraglutide group. n=6. Examples of 
micrographs are given. A: CONTROL; B: NS+LIRAGLUTIDE; C: NS+SEMAGLUTIDE; 
D: MPTP; E: MPTP+LIRAGLUTIDE; F: MPTP+SEMAGLUTIDE. Scale bar in image D: 
25 μm. 
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Fig. 5. GLP-1 analogues reduced the accumulation of a-Syn in the substantia nigra of mice 
induced by MPTP. NS= normal saline. The values represent the means ± S.E.M. ***=P < 0.001 
compared with the control group. ###=P < 0.001compared with the MPTP group. &&=P<0.01 
compared with the MPTP+LIRAGLUTIDE group; n=4 per group. 
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Fig. 6. GLP-1 analogues reversed the increase of ratio of mitophagy markers Bax/Bcl-2 in the 
substantia nigra of mice induced by MPTP. NS= normal saline. The values represent the 
means ± S.E.M. ***=P < 0.001 compared with the control group. ###=P < 0.001 compared 
with the MPTP group. &&&=P<0.001 compared with the MPTP+LIRAGLUTIDE group; 
n=4 per group. 
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Fig. 7. GLP-1 analogues reverse the decrease of autophagy-associated markers. NS= normal 
saline. A: Beclin1, B: ATG7, C: LC3 and D: P62 expression and even upregulated autophagy 
in the substantia nigra of mice reduced by MPTP. E: sample western blot scans are shown. 
The values represent the means ± S.E.M. ***P < 0.001 compared with the control group. 
###P < 0.001compared with the MPTP group. &&P<0.01 and &&&P<0.001 compared with 
the MPTP+LIRAGLUTIDE group; n=4 per group. 
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Fig. 8. GLP-1 analogues reverse the decrease of GDNF expression in the substantia nigra of 
mice reduced by MPTP. NS= normal saline. The values represent the means ± S.E.M. ***=P 
< 0.001 compared with the control group. ##=P < 0.01 and ###=P < 0.001compared with the 
MPTP group. &&&=P<0.001 compared with the MPTP+LIRAGLUTIDE group; n=4 per 
group. 
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