
Surgical repair of root and tooth
perforations
JOHN D. REGAN, DAVID E. WITHERSPOON & DEBORAH M. FOYLE

A root perforation is a mechanical or pathological communication formed between the supporting periodontal

apparatus of the tooth and the root canal system. Three broad categories of etiological factors exist and these are

procedural mishaps, resorption and caries. The diagnosis, management and repair of root perforations require skill

and creative thinking. Unfortunately, much of what has been written on the subject of root perforation repair is

unsubstantiated and empirical in nature and contributes little to evidence-based support for any specific repair

procedure. However, perforation repair frequently provides a very attractive and frequently successful alternative to

extraction of the involved tooth. In recent years, the procedure has become more predictable owing to the

development of new materials, techniques and procedures.

Introduction

A root perforation is a mechanical or pathological

communication formed between the supporting per-

iodontal apparatus of the tooth and the root canal

system (1). Perforations result in the destruction of the

dentine root wall or floor along with the investing

cementum. This communication compromises the

health of the periradicular tissues and threatens the

viability of the tooth (2–7). In a recent outcomes study

(8), a group in Toronto found that in retreatment cases

only two factors affected the success rate of the

treatment significantly: (1) the presence of a preopera-

tive radiolucency and (2) the presence of a preoperative

perforation.

Perforations are regarded as serious complications in

dental practice and pose a number of diagnostic and

management problems (9). However, when teeth are

of strategic importance perforation repair is clearly

indicated whenever possible (10). Unfortunately,

however, there is a paucity of evidence-based research

upon which treatment decisions can be based.

Traditionally, the presence of radicular perforations

has been both difficult to determine and manage (11–

13). Most frequently, they were managed surgically,

but in recent years non-surgical correction (14) of

many perforations has been facilitated by the use of

improved magnification and illumination provided by

the use of loupes or the surgical operating microscope

(SOM) (9, 10, 15–28). In practice, however, the

indications for surgical correction of root perforations

are being eroded from two directions: on the one hand

by the improved non-surgical management of perfora-

tions and on the other by the use of implants.

Perforations occur primarily through three possible

mechanisms: procedural errors occurring during root

canal treatment or post-space preparation (29, 30)

(Fig. 1A, B), resorptive processes (31) (Fig. 1C, D) and

caries (Fig. 1E). Most perforations result from

procedural errors (32, 33). Errors leading to these

defects include bur perforation during access opening

or during the search for canal orifices, excessive

removal of dentine in the danger zone (32, 34–42),

either with hand or rotary instruments (Fig. 2A),

misdirected files during canal negotiation, unsuccessful

attempts at bypassing separated instruments (Fig. 2B)

and misaligned instruments during post-space prepara-

tion (25, 43–48).

Resorption is either a physiologic or a pathologic

process resulting in loss of dentine, cementum and

sometimes bone (1). In terms of establishing a

treatment plan, it can be classified as external, internal
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or cervical as these frequently necessitate different

approaches or a combined approach. Resorption is a

perplexing problem for all practitioners. Diagnosis is

frequently complicated by the lack of radiographic

evidence until extensive demineralization has occurred

(49, 50).

Unmanaged carious lesions can proceed to perfora-

tion or near-perforation in the cervical region of the

tooth, at or below the level of the crestal bone (2, 51,

52). This is particularly common in older patients

where salivary quality and quantity is diminished and

gingival recession has led to dentine exposure.

Management of perforations will depend on a

number of factors, including:

� diagnosis,

� etiology,

� location of the perforation,

� access to the perforation site,

� visibility,

� adjacent anatomical structures (including adjacent

roots),

� perforation size,

� periodontal status,

� time lapse since the creation of the perforation,

� strategic importance of the tooth and

� experience of the operator.

Diagnosis

As time lapse between the creation of a perforation and

its repair is critical to the prognosis for the tooth (53,

54), early and accurate determination of the presence of

a perforation is of paramount importance (2). The

etiology for a perforation will play a major role in

determining the management protocol. A diagnosis is

established based on clinical and radiographic assess-

ment. At times, it is immediately apparent, either

clinically or radiographically, or both, that a perforation

has either been created or exists (Fig. 1C, D).However,

it is frequently difficult to determine the presence or

location of a perforation and careful consideration of all

diagnostic information is essential. Radiographs from

multiple angles, including bitewing radiographs, will

dramatically improve the clinicians diagnostic acuity

(55, 56) (Fig. 3A, B). This is especially evident when

trying to assess the location of the defect, particularly

when it is located either buccally or lingually, as the

image of the defect is often superimposed on that of the

root (57).

The apex locator, normally used to determine canal

working length, is an invaluable instrument in con-

firming the presence of a perforationwhen other clinical

indicators are inconclusive (58, 59). This is especially

true during access preparation or during the search for a

Fig. 1. (A) Furcation perforation following misguided access preparation. (B) Mandibular premolar root perforation by
misaligned post placement. (C and D) Resorptive processes resulting in root perforation. (E) Carious destruction
resulting in perforation of the root from the external into the pulp canal space.
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canal orifice. The use of the apex locator will provide the

clinician with an early warning of the existence of a

perforation and may prevent further extension of the

defect or the extrusion of obturating materials or

irrigating solutions into the defect (Fig. 2A).

Etiology

As mentioned previously, root perforations can be

classified into three main groups: procedural errors,

tooth resorption and caries.

Procedural errors

Procedural errors can occur at any stage during

endodontic treatment and are very likely to influence

the prognosis for the tooth (2, 14, 28, 60–63).

Coupled with an aging population and an increased

demand to retain their natural dentition, patients are

receiving more complex dental treatment (54, 64).

Consequently, clinicians are treating increasingly more

difficult endodontic cases, which in turn is associated

with a greater occurrence of procedural errors (54, 64).

Iatrogenic perforation of the tooth may occur during

access preparation, canal instrumentation or during the

creation of post-space prior to definitive restoration of

the tooth (Fig. 4A, B). The perforation may be the

Fig. 2. Perforations resulting from procedural errors. (A)
Excessive dentin removal from the ‘danger zone’ resulting
in strip perforation of the mesial root of this mandibular
molar. (B) Excessive dentin removal during attempt to
remove separated instrument resulting in perforation of
the root.

Fig. 3. (A and B) Radiographs from multiple angles,
including bitewing radiographs, will facilitate diagnosis
of pre-existing perforations.
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result of a lack of attention or experience on the part of

the clinician or may result from an attempt to locate a

pulp chamber or canal orifice or to negotiate a calcified

canal system.

Perforations may also result from excessive removal

of tooth structure during instrumentation of the canal

system and this tends to occur in anatomically

vulnerable locations such as the danger zones on the

mesial roots of lower molars (32, 35). In all cases,

prevention is preferable to cure and is facilitated by a

thorough knowledge of the anatomy of the tooth and

by careful assessment of the available radiographic and

clinical information prior to treatment (65). The

physical dimensions of an iatrogenic perforation will

be determined in part by the instrument that created it.

Typically, perforations formed in the floor of the

chamber with a round bur tend to be large and circular.

On the other hand, perforations formed during

preparation of a post-space tend to be elliptical and

large. Perforations caused by an endodontic instrument

during negotiation of a canal system tend to be smaller

and relate to the particular diameter of the last

instrument used.

Tooth resorption

The mineralized tissue of the tooth does not normally

undergo resorption. The actual reason for this is not

entirely understood, but a number of theories have

been proposed to explain the resistance of the tooth

tissue to clastic cellular activity (Fig. 5). Firstly, it is

believed that the root is protected by the remnants of

Herthwig’s epithelial root sheath that surrounds the

root in a mesh-like manner (66). The second hypoth-

esis suggests that the non-mineralized covering of the

dentine provided by pre-dentine internally or the

external cementoid layer externally provides the pro-

tection (67). The clastic cells require the presence of

extracellular proteins containing the aginine–glycine–

aspartic acid (RGD) sequence of amino acids for

binding (68–77). The RGD sequence is missing in

these non-mineralized layers. The third hypothesis

suggests that the pre-dentine and cementoid layer

contain an intrinsic factor osteoprotegrin (OPG) that

inhibits osteoclastic activity (78–83).

Resorption is most frequently categorized into

discrete entities, either internal or external, and guide-

lines leading to the systematic differential diagnosis

have been described in detail (84). Frank (13)

suggested that internal resorption is the result of

external resorption that has progressed to internal

involvement. However, most authorities now agree

that internal resorption is a discrete entity. While the

pathogenesis of internal resorption is not fully under-

stood, it is more easily managed than external

resorptive defects provided that the process has not

Fig. 4. (A) Radiographic appearance of post-perforation.
(B) Clinical appearance of extracted tooth showing post-
perforation in the concavity in the distal root of a
mandibular molar.

Fig. 5. Clastic cells resorbing dentine. The mineralized
tissue of the tooth does not normally undergo resorption.
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led to perforation of the root. On the other hand,

external root resorption demands more complex

treatment, which is in turn determined by the site,

nature and extent of the lesion. External root resorp-

tion can be classified according to the site, nature and

pattern of the process. Many different classifications (7,

85–87) have been proposed. Those suggested by Ne et

al. (88) includes, External Surface Resorption, External

Inflammatory Root Resorption, Ankylosis and External

Replacement Resorption.

Caries

The carious process involves destruction of dental

tissues as a result of microbial action (1). An untreated

carious lesion may invade the floor of the pulp chamber

or extend along the root, resulting in perforation of the

root. Treatment of these perforations may require a

combination of crown lengthening, root extrusion

(surgical or orthodontic) or tooth/root resection in

order to retain valuable radicular segments (2, 89–93).

Location of the perforation

When treatment planning for perforation repair, the

location of the perforation is probably the most

important and overriding factor in the decision-making

process. Fuss & Trope (7) presented a classification that

emphasized the relationship of the perforation site to

the ‘critical crestal zone.’ This classification divides the

root into coronal, crestal and apical portions: coronal

being defined as ‘coronal to the crestal bone and

epithelial attachment’; crestal being defined as ‘at the

level of the epithelial attachment and crestal bone’ and

apical being defined as ‘apical to the crestal bone and

epithelial attachment.’ In addition to considering the

position of the perforation in relation to the ‘critical

crestal zone,’ its position in the mesial distal and facial

lingual planes must also be taken into account (2, 57,

61).

Non-surgical treatment is indicated, whenever pos-

sible, in the management of perforations. Surgical

intervention is reserved for cases not amenable to, or

which have not responded to, non-surgical treatment,

or in which the concomitant management of the

periodontium is indicated (57). There is no clear-cut

distinction between those cases that are best treated

non-surgically and those treated surgically, and, fre-

quently, creative combinations of both non-surgical

and surgical approaches must be adopted. The decision

to repair perforations surgically can only be made when

a number of considerations have been addressed. These

considerations include the following:

Will access and visibility be adequate?

Can adjacent structures be protected?

Will the perforation repair result in the creation of an

untreatable periodontal defect?

Management of individual perforation scenarios

relative to the location of the perforation will be

discussed later in this article.

Access and visibility to the perforation

Access and visibility are determined, in the main, by the

location of the perforation. Irrespective of the location

relative to the critical crestal zone, the location of the

perforation relative to the horizontal axis of the tooth

will greatly influence its management. Buccally placed

perforations (Fig. 6) are invariably easier to manage

than those located lingually or proximally, and conse-

quently afford amore varied opportunity for repair; this

will in turn favor a surgical approach (2, 57, 63, 94, 95).

Lingually located defects, especially in the mandible,

Fig. 6. Buccally placed perforations are invariably easier
to manage than those located lingually or proximally.
(courtesy of Dr J He, Dallas, TX, USA).
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frequently exclude the surgical option (57) and are

either managed non-surgically, orthodontically or,

alternatively, the tooth may be destined for extraction.

The introduction of improved illumination and

magnification provided by the SOMhas been beneficial

in the management of perforations both surgically and

non-surgically (17–20, 22, 23, 96–98). In fact, many

cases are now managed non-surgically that previously

would have had a very poor surgical prognosis (Figs 1B

and 7). While many perforations of iatrogenic or

carious origin have well-defined limits, those owing

to resorption frequently undermine the radicular tissue

in all dimensions and are difficult to visualize or to

determine the extent of their boundaries. Unless the

boundaries of a perforation can be adequately visua-

lized, accessed and isolated, repair becomes difficult if

not impossible (49, 99).

Adjacent anatomical structures

Protection of adjacent anatomical structures is a major

consideration when planning to repair a perforation

surgically. The anatomical structures most likely to be

damaged include adjacent radicular structures, neural

structures, the maxillary sinus and the soft tissue of the

reflected tissue flap. Location, identification and isolation

of the structureswill usually prevent long-termpermanent

damage during the surgical procedure (57, 100, 101).

Management of perforations

Gutmann & Harrison (57) reported in the classic

surgical text, Surgical Endodontics, that the surgical

repair of perforations has received sporadic attention in

the dental literature and has been supported primarily

by case reports or limited studies (33). Since then, little

has changed and the surgical management of root

perforations continues to be a poorly understood and

executed endodontic procedure. As with all surgical

specialties, the endodontic clinician must possess a

thorough understanding of the anatomy and physiol-

ogy of the oral soft tissues, osseous tissues and tissues

that comprise the periodontium (57).

Perforation size, interval as the defect was created and

periodontal status are factors that havemajor influences

on the prognosis for success (2, 5, 7, 14, 20, 25, 28, 29,

61, 62, 102–105). These will be discussed in the overall

discussion on surgical management of the perforation

defect. As discussed by Weine (106), management of

perforations demands ‘spontaneity and creative ap-

proaches.’ The management of the perforation will be

discussed in terms of the critical crestal concept as

described above (7).

Supracrestal perforations

Perforations coronal to the crestal bone can frequently

be managed non-surgically. The perforation can usually

Fig. 7. (A) Internal approach to repair of post-
perforation of mesiolingual aspect of the root of a
mandibular premolar (see Fig 1B). (B) Retreated tooth
and definitive restoration of tooth. (C) Two-year follow-
up of tooth.
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be repaired with standard restorative materials such as

amalgam, gold, composite or cast metal restorations.

The margins of cast restorations can be extended so as

to include the defect. In order to facilitate the repair, it

may be necessary, at times, to extrude the tooth

orthodontically to a point where the perforation defect

becomes supragingival and unlikely to impinge on the

biologic width. (Biologic width denotes the combined

connective tissue and epithelial attachment from the

crest of the alveolar bone to the base of the gingival

sulcus.) (1, 92, 93, 107–111) Alternatively, the defect

may be exposed surgically or the tooth may be

intentionally replanted surgically following repair of

the perforation defect (112, 113).

Surgical crown lengthening may be indicated or used

to assist in the surgical access to coronal-third root

perforations, especially when the subgingival defect can

be transformed into a supragingival defect (114–120).

A minimum of 4mm of sound tooth structure must be

exposed by the surgical procedure (116, 117, 119,

121). Four millimeters corresponds to the measure-

ment from the bony crest to the edge of the sound

tooth structure and includes a minimum of 2mm for

‘biologic width’ (122). Biologic width is the amount of

space required for health by the gingival tissues

(1.07mm connective tissue attachment and 0.97mm

junctional epithelium) and was first reported by

Gargiulo et al. (123) working on cadavers. In addition,

they found the average sulcus depth to be 0.69mm.

This measurement of 2mm is an average for biologic

width that varies among patients (124) and even

among sites in the same patient.

If a restoration violates this space below the base of

the sulcus, it will result in inflammation of the tissues.

How the gingival tissues respond to a biologic width

violation depends on tissue ‘biotype’ (125–127).

Patients with a thick ‘biotype,’ which is thick gingiva

and thick bone, will demonstrate persistent inflamma-

tion unless the biologic width re-establishes itself and

the probing depth around the tooth deepens as a result

of this inflammation-induced bone resorption. Amoat-

like crater may form in the bone around the tooth if it is

very thick. A patient with a thin biotype will respond to

biologic width violation by gingival recession and bone

resorption.

To determine if crown lengthening is a practical

solution to managing a perforation, it is important to

consider the anatomical relationship to the adjacent

teeth and their supporting tissues. The bone support-

ing the adjacent teeth will also require recontouring if

the formation of a bony step is to be avoided. If a bony

step is created during the surgical procedure, the

gingiva will proliferate coronally instead of remaining at

the new, planned, more apical position. In addition,

teeth with subgingival restorations and narrow zones of

keratinized gingiva have statistically significant higher

gingival scores (plaque and bleeding) than teeth with

submarginal restorations and wide zones of keratinized

gingiva (128, 129). Therefore, if a tooth already has

little keratinized tissue (less than 2mm), it is important

to aim to preserve this during surgery (130). In the

molar area, the length of the root trunk must be taken

into consideration because a tooth with a short root

trunk is more likely to have furcation involvement as a

result of the surgery than a tooth with a medium or

long root trunk.

Crown lengthening may be performed either by

using a simple gingivectomy technique that will

sacrifice attached gingiva and not permit any bone

contouring or surgically reflecting tissue and perform-

ing an ostectomy and/or osteoplasty. If no bone is

removed, caremust be taken to ensure that there will be

enough biologic width space created or the gingival

margin will creep back towards its original position,

resulting in a ‘shortening’ of the clinical crown (128,

129).

Following administration of anesthesia, the surgical

procedure is initiated by placing a reverse bevel incision

at the crest of the free gingiva to the gingival

attachment extending from the mid-labial aspect of

the adjacent teeth. It is important to maintain as much

attached gingiva as possible. The resected tissue lining

the sulcus and the interproximal tissue is then curetted.

A second incision is made running parallel to the

surface of the gingival tissues from the crest of the

gingival tissue to the bone. The second wedge of tissue

is removed with the curette. The tissue can now be

retracted as an envelope flap. In most cases, vertical-

releasing incisions will not be required and should in

fact be avoided if possible to facilitate repositioning of

the reflected tissue. Bone can be removed with chisels

(such as Wiedelstadt chisel) or burs. End-cutting

friction grip burs are very effective instruments and

can be used safely without damaging adjacent tooth

structure. Alternatively, a no. 6 or 8 round burs can be

used to thin the bone sufficiently so that the chisel can

then be used. The bony contours should follow a

smooth path into the interproximal areas avoiding the
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creation of sharp ledges or grooves. Following comple-

tion of the bone removal and osseous recontouring, the

flap is positioned apically and sutured into place.

Periodontal dressings such as Coe-Pak are placed

routinely to provide protection for the healing tissues

and reduce discomfort for the patient (131).

Apical third perforations

Perforations in the apical third of the root can be

considered simply as an extra exit from the canal system

and managed either non-surgically or surgically (2, 95,

99). If the defect cannot be managed non-surgically,

resection of the root apex is usually the most efficacious

method for repair provided that the crown–root ratio

remains favorable. These types of perforation include

apical perforation of the root during instrumentation

of the canal system or placement of a post, perforation

following zipping of the apical portion of the canal,

deviation of the root canal instrument during cleaning

and shaping or in an attempt to bypass an obstruction

in the canal system. Perforations in the apical portion of

the root rarely communicate with the oral cavity and are

therefore not exposed to constant microbial contam-

ination (62).

Critical crestal zone perforations

Perforations in the ‘critical crestal zone’ are invariably

associated with a less favorable outcome and are

frequently more difficult to manage (2, 7, 132). These

perforations are most susceptible to epithelial migra-

tion and rapid periodontal pocket formation (133,

134). Management of the repair of these defects will

depend on many factors. Those necessitating surgical

intervention include the following:

� Perforations in areas not accessible by non-surgical

means alone.

� Perforations of the root with a concomitant period-

ontal component.

� Perforations that have not responded favorably to

non-surgical repair.

� Extensive defects that provide no physical bound-

aries against which to apply repair material.

� Perforations of a root that require a separate apical

surgical procedure.

� Perforations owing to resorptive activity not easily

managed from within the canal system.

� Defects into which excessive amounts of a foreign

body, such as obturating material, has been

extruded.

Surgical management of perforation
defects

The aim of surgical perforation repair should be to

produce an environment conducive to the regeneration

of the periodontium (28, 132, 135, 136). Periodontal

tissue reactions to experimentally induced perforations

in animals (137, 138) and accidental perforations in

humans (5, 139–141) have been studied. Successful

regeneration of the periodontal tissue will return the

tooth to an asymptomatic functioning unit of the

dentition (142–145).

Three broad categories of crestal zone perforation

defects exist that can potentially be repaired surgically.

These are:

(1)Strip perforations: Complete penetration of a root

canal wall owing to excessive lateral tooth structure

removal during canal preparation (6, 48, 103, 146).

(2)Furcation perforation: A mechanical or pathological

communication between the root canal system and

the external tooth surface and occurs in the

anatomic area of a multi-rooted tooth where the

roots diverge (6, 26, 34, 35, 137, 147–154); and

(3)Perforations related to external cervical root resorp-

tion: A relatively uncommon, insidious and often

aggressive form of external root resorption, which

may occur in any tooth in the permanent dentition

(13, 87, 88, 155–160) (Fig. 1D, E; see Fig. 14B).

Ideally, furcation and strip perforations should

initially be managed using a non-surgical technique.

This approach will preserve the periodontium, thus

increasing the probability of long-term success. Only

when disease persists should surgical management of

strip and furcation perforations be considered.

On the other hand, management of external cervical

root resorption ideally should be managed from an

external approach while attempting to maintain pulpal

viability if at all possible. Only when the pulp is already

irreversibly inflamed or necrotic, or when removal of

the diseased dentine tissue unavoidably causes irrever-

sible pulpal injury, should a root canal procedure be

performed. With this in mind, the management of

category I and II external cervical root resorption
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defects as described by Heithersay (159) should be

approached from the external or periodontal structure.

Management of category III (Heithersay) resorptive

defects can be attempted by either an internal or

external approach depending on which procedure

produces the least amount of tooth and periodontal

destruction. Category IV defects are deemed unrest-

orable. The external approach to the management of

cervical root resorption has been achieved using two

techniques: (1) a chemical cauterization of the lesion

using 90% trichloroacetic acid (159, 161, 162) and (2)

surgical removal of the lesion (2, 14, 61, 62, 94, 132,

134, 142, 147, 163–169). The discussion in this paper

will be limited to surgical management. For the sake of

discussion, the surgical repair of any perforation defect

can be broken into soft-and hard-tissue management

even though they are clinically inseparable.

Soft-tissue management during surgical
repair of perforation defects

The basic window for soft-tissue access is similar for

each type of perforative defect with slight modifications

introduced as necessary to accommodate the surgeon’s

need in managing the underlying hard tissues. In

designing the soft-tissue access window, several factors

must be taken into consideration including frenal and

muscle attachments, bony eminences and the position

of the defect itself (57, 170, 171). The soft-tissue access

window is formed by combining a horizontal relieving

incision and if necessary vertical relieving incision(s).

Given that the defect is frequently close to the marginal

tissues, a vertical relieving incision may not be required

or if required may not need to extend to the depth of

the vestibule. As with periradicular surgery, vertically

orientated relieving incision will limit the number of

vessels severed (172, 173) diminishing the potential for

hemorrhage, which is especially critical if bonded

materials are planned for the restoration of the defect.

Horizontal relieving incision

In view of the fact that a defect may extend

interproximally, the only appropriate form of horizon-

tal relieving incision in the region of the tooth being

treated is one where the entire dental papilla is

completely mobilized. Thus, the horizontal intrasul-

cular incision should extend from the gingival sulcus

through the periodontal ligament fibers and terminate

at the crestal bone and pass adjacent to each tooth (57,

128, 129, 174, 175). Occasionally, when a defect

extends interproximally, the tissue is reflected on both

the lingual and buccal sides of the tooth. As the

horizontal relieving incision extends beyond the tooth

with the defect, other forms of intrasulcular incisions

such as the papillary-base incision (176–178) can be

used.

Vertical relieving incision

If a vertical relieving incision is required to improve

access to the defect, several general principles should be

followed. The incision should be parallel to the long

axis of the tooth where possible and should not involve

frenae, muscle attachments or bony eminences unless

necessary. The incision should be made over healthy

bone distant from the site of the defect, beginning at

the midpoint between the dental papilla and the

horizontal aspect of the buccal gingival sulcus, thereby

avoiding dissection of the dental papilla (57, 129, 174).

Soft-tissue access window design

Combinations of vertical and horizontal incisions are

used to achieve various soft-tissue access window

designs. A full mucoperiosteal reflection is required,

lifting the entire body of soft tissue as one unit,

including the alveolar mucosa, the gingival tissues and

periosteum. Three variations of soft-tissue access

window can thus be established (57, 171, 179, 180):

� Limited triangular: One vertical relieving incision

(see Fig. 10B).

� Limited rectangular: Two vertical relieving inci-

sions.

� Envelope: No vertical relieving incision (see Fig.

14D).

Tissue reflection

Elevation and reflection of the entire mucoperiosteal

complex are essential and will help to minimize

hemorrhage during the procedure (181). If a vertical

relieving incision is used, tissue elevation and reflection

should begin from this vertical incision within the

attached gingivae (57, 100, 174, 182). However, if a

horizontal incision alone is used, then elevation and

reflection should begin at the region of the diseased
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tissues. Once the tissue adjacent to the defect has been

elevated, the surgeon should use a gentle rocking

motion to continue the elevation and reflection in a

mesial and distal direction as required (57). Typically,

the tissue should be reflected to include teeth adjacent

to the tooth with the defect (Fig. 8). Defects that

involve the furcation and mid-root region will require

either a limited triangular or limited rectangular soft-

tissue access window.

As the underlying bone of the cortical plate is

undulating (183) (Fig. 9), damage to the fragile soft

tissues during elevation should be avoided. The

surgeon should take great care to prevent slipping of

the elevator during the tissue reflection; this can be

achieved by using an appropriate instrument that is

stabilized with adequate finger support. As the inter-

dental papilla is approached, a narrower instrument

may be required to gently undermine and elevate the

tissue in this region. This process should be continued

gradually until the osseous tissues overlying the

diseased tooth structure are adequately exposed.

Once the tissue is elevated, it must be retracted to

provide adequate access for management of damaged

radicular tissues. The main goal of tissue retraction is to

provide a clear view of the bony surgical site and to

prevent further soft-tissue trauma (57). When a

horizontal incision alone is used, the major concern

during elevation and retraction of the tissue is

avoidance of tearing or crushing of the tissue. A tear

will usually occur at the point of maximum tension

where the tissue is being retracted most (174, 182).

This occurs most frequently in close proximity to the

defect and a tear in the tissue in this region can

complicate wound closure. The surgeon should there-

fore carefully consider the use of a simple envelope

access window.

Hard-tissue management

As with any surgical procedure involving bone, the aim

should be to remove the affected tissues, conserve the

healthy hard tissue and to minimize heat generation

during the process (57). Similar to root-end surgery,

hard-tissue management involves five phases. Firstly,

removal of healthy tissue to gain access to the diseased

tissues followed by removal of the diseased tissues and

foreignmaterial. These two phases are then followed by

the third stage, which is the formation of an appropriate

cavity form to receive the restorative material. The

fourth phase of the process aims to achieve a dry

surgical field using appropriate hemostatic techniques

and materials (181) followed by placement of the

restorative material in the cavity. Finally, in the fifth

phase, the root surface is conditioned (184, 185), if

appropriate, prior to tissue re-approximation. Typi-

cally, a surgical high-speed bur is used in phase one and

two of the procedure. As the need for a greater

refinement of the perforation site increases and the

space in which to achieve this refinement decreases,

Fig. 8. Design of the surgical flap to allow for tissue over
teeth adjacent to the tooth with the defect to be reflected.
This will provide for good access and visibility.

Fig. 9. As the underlying bone of the cortical plate
undulates, care must be exercised to avoid damaging the
fragile soft tissues during elevation (courtesy of Dr JL
Gutmann, Dallas, TX, USA).
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ultrasonically energized tips can be used in phases two

and three. It is useful to have a wide array of ultrasonic

tips available during the surgical procedure, as the

various clinical scenarios that may arise are not often

easily managed using a single ultrasonic tip.

Hard-tissue management: furcation and strip
perforation

These defects (Fig. 10A, B) have similarities with the

conditions found in periradicular surgery. There is a

typically a region of persistent disease associated with an

iatrogenic defect. This leads to a bacterial-stimulated

growth of granulomatous tissue and associated bony

loss (186–196). The goals of the surgical procedure are

to debridé and then seal the defect to prevent further

egress of microorganisms from the canal system or

from the oral cavity into the periradicular tissues (57).

Thus, the surgeon may view this procedure as simply a

root-end surgery carried out in a different region of the

tooth. The management of such a defect thus requires

the same systematic approach as that used in root-end

surgery. If the lesion perforates the cortical plate, then

the soft tissue should first be peeled away from the

osseous crypt, starting at the lateral borders. This can

be accomplished efficiently by using the curette with

the concave surface facing the internal envelop of the

osseous opening. Once the soft-tissue lesion has been

separated from the bone to the point where the crypt

changes its convexity, the curette can be used in a

scraping manner to remove the remainder of the

granulomatous tissue from the opposing wall of the

osseous defect (57, 101, 179, 197, 198). If the cortical

plate is intact, then a hard-tissue access window can be

made using a multi-fluted round bur in a rear vented

high-speed hand piece (199) applying copious sterile

irrigation. This combination in conjunction with an

effective irrigation system reduces the heat generated in

the bony crypt (200–206). Temperature increases

above normal body temperature have been shown to

be detrimental to the osseous tissue (207–222). The

surgeon should collate information gleaned from

multiple radiographs, clinical examination and knowl-

edge of the relevant tooth anatomy to establish the

most appropriate access point to the defect. Once the

lesion proper is entered and the access window

expanded sufficiently, the soft-tissue lesion can be

removed as described previously. Having removed the

lesion, the focus of the procedure is now to identify and

clean the perforation. As with root-end surgery, an

appropriate ultrasonic root-end preparation tip can be

used to clean and simultaneously establish a cavity

form. The use of the SOM in conjunction with

microsurgical instruments and mirrors greatly facilitate

this procedure (20, 163). As this type of perforative

defect is typically encased in bone, the material of

choice to restore this type of defect is mineral trioxide

aggregate (MTA).

Hard-tissue management: cervical root
resorption

In order to manage this type of defect properly, it is

important to understand the clinical nature and

appearance of cervical root resorption. Clinically, the

lesion that forms adjacent to cervical root resorption

can vary from a small defect at the gingival margin

Fig. 10. (A) Radiographic image showing strip
perforation. (B) Associated bone destruction exposed
following reflection of overlying soft tissues.
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(Heithersay Class I) to extensive undermining cavita-

tions of the tooth enamel that produces a pink coronal

discoloration of the tooth crown (49). The resorbing

tissue is fibro-vascular in nature with odontoclastic cells

adjacent to the dentine surface. The lesion appears to

progress by penetrating deep into the dentine structure

of the tooth through small channels initially (Fig. 11A,

B). These channels gradually become enlarged and

contain fibro-osseous tissue. An overlying inflamma-

tory response can be present when a secondary invasion

of microorganisms occurs.

Successful surgical intervention requires that the

entire pathological process be eliminated. (A diagram-

matic representation of these procedures is illustrated

in Fig. 12.) The use of magnification and powerful

illumination can enhance the ability of the surgeon to

visualize the diseased tissues and thus ensure adequate

removal. The basic principle is to use a small instrument

to remove the ingrowths of fibro-osseous tissue (49,

99) into the dentine and preserve the dentine where it is

normal. Several different types of burs are useful in

removing resorptive tissue. These include slow-speed

burs such as the Müller bur, the LN bur and round #1

surgical length latch burs. High-speed surgical length

round #1 bur can also be used but require a greater

degree of control owing to their superior cutting

ability. Diamond-coated ball and pear-tipped ultrasonic

instruments are also useful, both to remove small

increments of bone and affected dentine (223–225).

Once all of the diseased tooth structure has been

removed, the tooth needs too be thoroughly examined

to assess the viability of the pulp. If the long-term

integrity of the pulp is compromised or a pulpal

exposure is present, then non-surgical root canal

treatment is indicated. If rubber dam isolation can be

established (Figs 12E–G and 13), performing root

canal treatment through the existing defect, if possible,

can prevent further destruction of the tooth. An

ultrasonic root-end preparation tip can be used to

clean the pulp chamber proper. If adequate isolation

cannot be established, then the defect should be

restored first and the non-surgical root canal treatment

completed subsequently. The integrity and patency of

the pulpal space can be maintained by placing a gutta-

percha cone in the canal itself. This will prevent the

restorative material from flowing into and occluding

the canal system (Fig. 12F). As aesthetics are frequently

important in this type of perforative defect, a bonded

tooth-colored restorative material that is tissue

‘friendly’ to the gingivae is most appropriate (Fig.

14). An alternative is to reposition the flap apically to

the base of the resorption repair. Should this be

aesthetically unacceptable, orthodontic extrusion can

be used to improve the gingival contour (109, 114,

226).

Hard-tissuemanagement temperature changes

Temperature increases above normal body temperature

within osseous tissues have been shown to be detri-

mental (207, 214–217, 222). A round bur used with a

gentle brush stroke action has been shown to prevent

rapid increase in temperature of the bone and produces

a wound site with less inflammation (200, 201, 204–

207). The use of a coolant during bone cutting is

essential, as the absence of an appropriate irrigant can

Fig. 11. (A and B) Resorptive processes frequently begin
as small defects at or below the gingival margin. As shown
in the radiograph, the lesion appear to progress by
penetrating deep into the dentin structure of the tooth
through small channels initially. These channels gradually
become enlarged and contain fibro-osseous tissue.
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result in temperature increases in excess of those known

to impair bone healing (227). Temperatures can rise

above 1001C by applying excess pressure during

cutting, by burying the bur into the bone, or where

little or no irrigant reaches the cutting tip (206).

All ultrasonic surgical tips should contain an irriga-

tion port. Using an ultrasonic instrument in the wound

without adequate irrigation can also result in an

extreme temperature increase within the tissues,

although this specific effect has not been demonstrated

during endodontic surgery. However, the effect of

scaling without irrigation produces an increase in

dentine temperature of up to 351C above baseline

temperatures (228). This increase in temperature

during scaling and root planning was described as

being injurious to pulpal and periodontal tissues (228,

229). Recently, the use of non-cooled ultrasonic

instruments within the canal system has been cited as

the cause of extensive thermal injury to the period-

ontium (230).

Placement of the restorative material: localized
hemostasis

Localized hemostasis throughout the surgical proce-

dure, particularly during placement of the restorative

material, is essential to ensure the successful repair of

the perforating defect. Good hemostasis will minimize

surgical time, blood loss, postoperative hemorrhage

and swelling (57). Hemostatic agents used during

endodontic surgery are intended to control bleeding

from small blood vessels or capillaries. Localized

hemorrhage control enhances visibility and facilitates

assessment of root structure and ensures establishment

of a dry environment for the placement of restorative

materials. Several agents have been advocated to

Fig. 12. Diagrams demonstrating techniques for the management of a resorptive perforating defect of the root of a
maxillary central incisor. (A) Radiographic image of perforating defect. (B) Reflection of tissue where an envelope tissue
flap design has been used. (C) Use of rotary instrumentation to remove the fibrous-osseous tissue and to prepare the root
for a restoration. (D) Completed preparation. (E) Placement of dental dam and root canal system debridement. (F)
Temporary occlusion of the canal system with a gutta-percha cone and restoration of perforation defect. The gutta-
percha cone prevents blockage of the root canal system by the restorative material used in restoration of the perforation
defect. (G) Completed root perforation repair. (H) Replaced soft tissue flap.

Fig. 13. Clinical example of dental dam isolation of
perforation defect prior to restoration with composite
restorative material.
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control hemostasis during surgery. The action of these

materials, their ability to control bleeding and their

effects on healing vary considerably. They aid in

coagulation either through a physical tamponade

action, enhancement of the clotting mechanism,

vasoconstriction or a combination of each of these

effects. No one local hemostatic agent is ideal; each of

the available materials has advantages and disadvan-

tages. Local hemostatic agents include collagen-based

materials, ferric sulfate, calcium sulfate, epinephrine-

soaked cotton or cotton pellets or cautery/electro-

surgery (181). Unlike many periradicular surgical

procedures, surgery in the cervical region of the tooth

can sometimes be isolated using a rubber dam. The use

of a rubber dam, if physically possible, provides ideal

control of bleeding (Fig. 13).

Frequently, in cervical resorptive defects, the lesion

will be in the region of the junction of the coronal and

middle third. A small amount of bone can be chiselled

away to reveal a collar of sound tooth structure

( � 1mm). This collar of tooth structure can be used

as support for an anterior rubber dam clamp. This form

of ‘hemostatic control’ is ideal in cases where bonded

restorative material is used to restore the defect.

Root surface preparation

The presence of healthy cementum on the root surface

is necessary for the successful regeneration of period-

ontal tissues (135). A number of substances found in

cementum stimulate the migration, growth and attach-

ment of periodontal fibroblasts. Cementum extracts

also activate fibroblast protein and collagen synthesis,

which is necessary to re-establish a functional period-

ontal ligament (231–233).

Root surface conditioning is designed to remove the

smear layer, thereby providing a surface that is

conducive to cellular adhesion and growth. It exposes

the collagenous matrix of dentine and retains biologi-

cally active substances, such as growth factors, con-

tained in the dentine. In experimental studies,

demineralized dentine induced the development of

cementum-like mineralized tissue (234–238). It is

argued that this treatment produces a biocompatible

surface, conducive to periodontal cell colonization

without compromising the adjoining periodontium. A

number of solutions have been advocated for root

surface modification: citric acid, tetracycline and

ethylenediamine tetra-acetic acid (EDTA) (239–248).

All three solutions have been shown to enhance

fibroblast attachment to the root surface in vitro

(249, 250).

Traditionally, citric acid has been the solution of

choice. A 2–3min application of an aqueous solution of

citric acid (pH 1) has been recommended to etch

diseased root surfaces in order to facilitate formation of

new attachment and cementogenesis (251–254). Craig

& Harrison (184) examined the effect on periradicular

healing of citric acid demineralization of resected root

ends of dogs. Use of a 1–2min application of 50% citric

acid at a pH 1 resulted in demineralized root ends, with

earlier complete healing than the non-demineralized

root ends. However, the beneficial effect of etching

dentine surfaces with low pH solution has been

Fig. 14. Clinical procedures involved in managing a resorptive perforating defect. (A) Preoperative photograph. (B)
Preoperative radiograph. (C) Radiograph showing temporary occlusion of root canal system during repair of the buccal
resorptive defect. (D) Completed restoration before repositioning of soft-tissue flap. (E) Postoperative radiograph of
completed case.
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questioned. Low pH may jeopardize the adjacent vital

periodontal tissues. Extended applications (3min) have

been shown to discourage alveolar bone growth (242,

255–261).

EDTA, a solution with a neutral pH is equally

effective in exposing collagen fibers on dentine

surfaces. The benefit of EDTA over the lower pH

solution is that it is not injurious to the surrounding

tissues (260). An application of 15–24% EDTA for

approximately 2min produces the optimum root

surface conditioning. At this concentration and time

of application, EDTA at neutral pH selectively removes

mineral from a dentine surface and exposes the collagen

matrix. Lower pH solutions not only removed the

inorganic structure but also denature the collagen

matrix (242, 256, 257).

Tetracycline has also been promoted for root surface

conditioning. A 30 s application removes the smear

layer leaving clean and open tubules (244). There is a

trend for greater connective tissue attachment follow-

ing tetracycline treatment of periodontally diseased

human roots. Studies comparing the effect of a 3-min

application of either EDTA (pH 7.3) or tetracycline

HCl (pH 1.8) showed no significant difference in the

treated tooth surfaces (246). However, the application

of EDTA enhanced periodontal ligament cell attach-

ment (243).

Although the root surface conditioning effects of

citric acid, EDTA and tetracycline are well documented

in the periodontal literature, this treatment modality

has not translated into significant gains in periodontal

attachment when treating periodontally diseased teeth

(248). The use of conditioning agents is not recom-

mended when using MTA either as a perforation repair

material or as a root-end filling material (262).

Guided tissue regeneration and repair of root
perforations

Surgical procedures to repair perforation defects

involve loose or compromised cortical bone, the result

of either the disease process or the surgical procedure

itself (263). This damaged cortical bone may result in

reduced success for the corrective surgical procedure.

Furthermore, the presence of an apico-marginal defect

(264, 265) or dehiscence that is distinguished by a total

loss of alveolar bone over the entire root length

decreases the success of periradicular surgery signifi-

cantly (266, 267). The cause of failure in these

scenarios has been identified as an in-growth of non-

osteogenic tissues into the surgical site and down-

growth of epithelial tissue along the root surface. In

these cases, successful treatment outcomes may depend

more on control of the epithelial proliferation than

management of defect. Guided tissue regeneration

techniques have been advocated for use in such cases

(6, 132, 142, 147, 263, 264, 268–284).

The basic principle of guided tissue and bone

regeneration is based on the fact that different types

of cells repopulate a wound at different rates during

healing. The soft-tissue cells are considerably more

motile than the hard-tissue cells. Therefore, they tend

tomigrate into the woundmore rapidly during healing.

A barrier interposed between the gingival tissue and the

exposed root surfaces and supporting alveolar bone

prevents colonization of the exposed root surface by

gingival cells. This encourages the selective repopula-

tion of the root surface by periodontal ligament cells.

The use of a semi-permeable barrier theoretically

would allow periodontal ligament cells and other cells

with osteogenic potential to repopulate the defect,

resulting in new connective tissue attachment and bone

formation (271, 281, 285–290). Several case reports

have also discussed the use of guided tissue regenera-

tion techniques in conjunction with surgical perfora-

tion repair (6, 132, 142, 147, 149, 263, 272–274, 278,

291, 292).

Barriers can be grouped into two broad categories:

non-resorbable and resorbable membranes. Resorbable

membranes are generally better suited for endodontic

applications, as a second surgical procedure is not

required to remove the membrane. Frequently, mem-

branes will require support so that the membrane does

not collapse into the defect itself. In these cases, use of

either a titanium-tented membrane or a supporting

graft material may provide the necessary support for the

membrane. Graft materials have two main functions:

first as a mechanical substructure to support a

membrane and the overlying soft tissues and second as

a biological component that enhances bone formation.

The use of guided tissue techniques raises several

additional issues that should be discussed with the

patient prior to surgery. These include the cost of the

additional material, the origin of the material (syn-

thetic, animal or human), the need to manage the

wound for a longer period of time and potential

postoperative complications related specifically to these

techniques and materials.
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If guided tissue regeneration techniques are to be

used in surgical perforation repair, it is advisable to use a

resorbable membrane. The membrane must be ex-

tended 2.0–3.0mm beyond the margins of the bony

opening. The wound must be sutured to ensure that

the tissue covers the membrane in its entirety.

Compression of the tissues postoperatively is not

recommended as this will collapse the membrane into

the underlying defect. Furthermore, postoperative

administration of antibiotics has not been shown to

enhance the prognosis for these cases; however, many

clinicians empirically recommend antibiotic use (129).

Finally, it is not advisable to use guided tissues

techniques in smokers as smoking has consistently

been shown to affect the outcome adversely (293–

298).

In addition to conditioning solutions and regenera-

tive membrane techniques, the use of enamel proteins

to enhance new attachment has been advocated (299–

305). Emdogain is a derivative of porcine enamel

proteins.

Materials available for repair of
perforation defects

Historically, a plethora of materials have been sug-

gested for use in perforation repairs (5, 27, 29, 30, 53,

63, 136, 144, 306–308). The list is expansive and the

number of materials too numerous to list. Many of

these materials were obviously unsuitable for use in

perforation repair, while others such as amalgam (137,

309), Cavit (137, 309), indium foil, zinc-oxide

cements, ethoxybenzoic acid (Super EBA) (139),

composites and glass ionomers (134, 148, 309, 310)

have been used quite successfully for many years.

However, many of these repair procedures have

resulted in the development of periodontal defects,

thereby compromising the prognosis for long-term

tooth retention.

The choice of material will be determined in part by

the site of the perforation. Supracrestal perforations

demand the use of a material such as amalgam or

composite that will be resistant to dissolution by oral

fluids or abrasion and erosion by foods, dentifrices or

oral hygiene aids. Materials such as Intermediate

Restorative Material (IRM), Super EBA, Diaket or

MTA are not considered suitable materials in these

situations. However, a recent report (10) demonstrates

a 15-month follow-up on a case where a supracrestal

perforation was repaired with MTA.

A number of materials have been developed specifi-

cally for repair of tooth structure in the subgingival area

following root caries, perforations or cervical erosions.

These include resin-ionomer suspensions such as

Geristore and compomers such as Dyract. This group

of materials attempts to combine the various properties

of composite resins and glass ionomers. Both Geristore

and Dyract have been recommended for use in

restoring subgingival surface defects such as root

surface caries, external root resorption lesions, iatro-

genic root perforations and subgingival oblique frac-

tured roots. Geristore has been shown to be an

acceptable material for repair of root caries and cervical

erosions in a number of clinical studies (21, 311–316).

When used to repair root perforations and as an adjunct

to guided tissue regeneration, results have been

favorable in isolated case reports (25, 113, 317–319).

When used as root-end fillingmaterials in vitro, leakage

assessments of Geristore and Dyract indicate that they

leak less than IRM, amalgam or Super EBA (320, 321).

Compared with MTA root-end fillings, Geristore has a

similar leakage pattern (322). Geristore and Dyract are

less sensitive to moisture than conventional glass-

ionomer cement; however, dry environments produced

stronger bonds (323) Geristore appears to facilitate

regeneration of the periradicular tissues (324). Studies

investigating epithelial and connective tissue adherence

to the material show evidence of cellular attachment to

the material when placed in subgingival cavities (312,

315, 316).

Repair of perforations in the subcrestal region has

been greatly facilitated recently in recent years by the

development of a number of new materials (105, 144,

307, 325–327) and some innovative techniques (29,

54, 64, 328). True regeneration of the periodontal

architecture is possible.

Regeneration of the periradicular tissues subsequent

to surgery or owing to the ravages of disease processes

implies replacement of the various components of the

tissue in their appropriate locations, amounts and

relationships to each other (329). Repair, on the other

hand, has been defined as a biological process by which

continuity of disrupted tissue is restored by new tissues,

which do not replicate the structure and function of the

lost ones (330, 331).

Without doubt, the material that has had the greatest

impact on themanagement of these cases isMTA.MTA
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was introduced to the market in the mid-1990s by

Torabinejad & colleagues (10, 14, 28, 30, 144, 145,

153, 154, 306, 325, 326, 332–352). It has subse-

quently received FDA approval for use in pulp capping,

root-end filling and perforation repair procedures (30,

144, 306). Other contemporary repair materials

include Diaket, a polyvinyl resin (307, 353, 354),

composite resins (148, 355), glass-ionomer materials

(274, 310, 356) and compomers (113, 134, 136, 308,

312, 315, 316). When combined with tissue regen-

erative procedures (132, 142, 278, 281), the prognosis

for many perforated teeth has been greatly improved.

Both MTA and Diaket have been shown to facilitate

regeneration of the periodontal apparatus following

wounding (307) and have been described as osteo-

conductive in nature. Regeneration of the periodontal

apparatus can occur when these materials are used as a

root-end filling or perforation repair.
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